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Abstract

This paper studies regularity properties of optimization-based controllers, which are obtained by solving
optimization problems where the parameter is the system state and the optimization variable is the input to
the system. Under a wide range of assumptions on the optimization problem data, we provide an exhaustive
collection of results about their regularity, and examine their implications on the existence and uniqueness
of solutions and the forward invariance guarantees for the resulting closed-loop systems. We discuss the
broad relevance of the results in different areas of systems and controls.
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1. Introduction

Optimization-based controllers are ubiquitous in
numerous areas of systems and control including
safety-critical control [1], model predictive con-
trol [2, 3], and online feedback optimization [4,
5]. Optimization-based controllers are a particu-
lar class of parametric optimization problems. The
theory of parametric optimization [6, 7, 8] considers
optimization problems that depend on a parameter
and studies the regularity properties of the min-
imizers with respect to it. In optimization-based
control, the parameter is the state and the opti-
mization variable is the input.

Given a dynamical system (either in discrete or
continuous time) with state x ∈ Rn and input u ∈
Rm, an optimization-based controller is a feedback
law obtained by solving a problem of the form

argmin
u∈Rm

f(x, u) (1a)

s.t. g(x, u) ≤ 0 (1b)

with f : Rn×Rm → R and g : Rn×Rm → Rp. Note
that the system state x acts as a parameter in (1).
Assuming that the optimizer of (1) is unique for ev-
ery x ∈ Rn, this defines a function u∗ : Rn → Rm,
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mapping each state to the optimizer of (1). This
approach allows to encode desirable goals for con-
troller synthesis both in the cost function f and in
the constraints g. For instance, desirable perfor-
mance objectives such as minimum control effort
or maximizing convergence rate can be captured
by the cost function, whereas the constraint func-
tions can capture operational limitations on con-
trol effort and prescriptions to ensure properties
such as closed-loop stability or safety. The flexibil-
ity of this synthesis approach makes it particularly
attractive, but we should note the caveat that, in
general, the controller u∗ is not available in closed
form. Instead, additional work needs to be per-
formed in order to find the input by solving the re-
sulting optimization problem (1). Independently of
the computational aspects, one needs to ensure that
the resulting controller behaves properly when em-
ployed to close the loop on the dynamical system,
hence the importance of the study of the regularity
properties of optimization-based controllers. Next
we present different examples from the systems and
controls literature where such controllers arise and
motivate the importance of studying the regularity
properties of u∗.

Example 1.1. (Control barrier and Lyapunov
function-based control): In safety-critical applica-
tions, safe controllers are often designed through
control barrier functions (CBF) [1]. Let ẋ = F (x, u)
be a control system with F : Rn×Rm → Rn locally
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Lipschitz. Assume that the set of safe states is given
by the 0-superlevel set of a continuously differen-
tiable function h : Rn → R. This function is a CBF
if, for every x ∈ Rn, there exists u ∈ Rm such that
∇h(x)TF (x, u) + α(h(x)) ≥ 0, where α : R → R
is an extended class K function1. Any Lipschitz
controller ucbf : Rn → Rm that satisfies this in-
equality at every x ∈ Rn renders the closed-loop
system safe (i.e., makes the 0-superlevel set of h
forward invariant). This inequality can be incor-
porated as a constraint in an optimization problem
defining a feedback controller. For example, given a
nominal controller k : Rn → Rm, designed with de-
sirable properties such as asymptotic stability of an
equilibrium point or minimizing a certain infinite-
horizon optimal control cost, safety filters [9] seek
to find the controller closest to k that satisfies the
CBF constraint. Such controller can be found at
every state x ∈ Rn by solving the following opti-
mization problem:

u∗sf(x) = argmin
u∈Rm

1

2
‖u− k(x)‖2 , (2a)

s.t. ∇h(x)TF (x, u) + α(h(x)) ≥ 0, (2b)

where again α : R → R is an extended class K
function. Often, one also seeks to endow safety fil-
ters with stability guarantees by employing control
Lyapunov functions (CLF) [10]. Given a positive
definite function V : Rn → R≥0, V is a CLF if, for
all x ∈ Rn \ {0}, there exists u ∈ Rm such that
∇V (x)TF (x, u) + W (x) ≤ 0, where W : Rn → R
is a positive definite function. A locally Lipschitz
controller uclf : Rn → Rm that satisfies this inequal-
ity at every state x ∈ Rn renders the origin of the
closed-loop system asymptotically stable. Given a
CLF V : Rn → R, one can seek to endow usf with
stability guarantees by solving the following opti-
mization problem at every x ∈ Rn:

u∗cc(x) = argmin
u∈Rm

1

2
‖u− k(x)‖2 , (3a)

s.t. ∇h(x)TF (x, u) + α(h(x)) ≥ 0, (3b)

∇V (x)TF (x, u) +W (x) ≤ 0, (3c)

Note that both (2) and (3) are special cases of (1).
Similar optimization-based control designs of the
form (1) leveraging CLFs and CBFs have been pro-
posed in [11, 12, 13, 14, 15, 16, 17, 18], among

1A function α : R→ R is an extended class-K function if
it is strictly increasing and α(0) = 0.

many others. If the system is control-affine, as it
is often the case in practice, then (2) and (3) are
quadratic programs (QPs). Importantly, u∗sf (resp.
u∗cc) is only guaranteed to be safe (resp. safe and
stable) if it is locally Lipschitz. Hence, studying
the regularity properties of (2) and (3) is critical
to ensure that the closed-loop system has the de-
sired safety and/or stability properties. Moreover,
if u∗ is locally Lipschitz, then the right-hand side
of (18) is locally Lipschitz too, and then the Picard-
Lindelöf theorem [19, Theorem 2.2] guarantees exis-
tence and uniqueness of solutions for small enough
times. Similar regularity properties are also rel-
evant in the study of the contraction properties
of optimization-based controllers of the form (2)
and (3), as shown in [20]. •
Example 1.2. (Online feedback optimization):
Here we describe the problem of optimally regulat-
ing the steady-state output of a plant, a task often
referred to as online feedback optimization [4, 5].
This problem arises in a variety of application ar-
eas including power systems [21, 22], network con-
gestion control [23], and traffic networks [24]. In
a typical set-up, the plant is modeled with the dy-
namics

ẋ = F (x, u)

y = G(x, u) (4)

where G : Rn × Rm → Rk and y ∈ Rk denotes
the output. We assume that there exists a map
h : Rm → Rk, called the steady-state map, such that
for each constant input u ∈ Rm and initial condi-
tion x0 ∈ Rn, the corresponding output of (4) sat-
isfies y(t)→ h(u) as t→∞. Consider the problem
of driving the output to an optimal steady-state,
formalized by the optimization

min
u∈Rm,y∈Rk

Φ(u, y) (5a)

s.t. (u, y) ∈ U × Y (5b)

y = h(u), (5c)

where Y ⊂ Rk denotes the set of valid out-
puts, U ⊂ Rm denotes the set of valid inputs,
and Φ : Rm × Rk → R denotes the cost of the
corresponding input-output pair. The problem can
equivalently be viewed as an optimization over a
set of inputs alone by eliminating the variable y
from (5):

min
u∈Rm

Φ(u, h(u)) (6a)

s.t. (u, h(u)) ∈ U × Y. (6b)
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Note that (5) and (6) are “static” problems, i.e.,
the state of the plant does not appear in the cost
function or the constraints as a parameter. In prac-
tice, however, the steady-state map and the plant
dynamics are only partially known, and subject to
external disturbances or model uncertainties. This
precludes one from directly solving either prob-
lem offline and simply applying the resulting input
to (4) (this strategy is called feedforward optimiza-
tion). Instead, one turns the “static” formulation
into a “dynamic” one by solving the problem online
and using real-time measurements of the output of
the plant in place of a closed-form expression of
the steady-state output. Formally, this amounts to
replacing the expression y in (5), or h(u) in (6),
with G(x, u):

u∗ofo(x) = argmin
u∈Rm

f(x, u) := Φ(u,G(x, u)) (7a)

s.t. u ∈ U (7b)

G(x, u) ∈ Y. (7c)

The idea is that at each time instant, the out-
put measurement is obtained online and fed back
into (7), hence this strategy is called online feedback
optimization. We note that (7) is of the form (1),
by rewriting the input and output set inclusions as
inequalities as in (1). In this setting, understanding
the regularity properties of the closed-loop dynam-
ics ẋ = F (x, u∗ofo(x)) becomes necessary to ensure
good performance of implementing (7) on a phys-
ical plant. Letting uss denote the solution to (6),
one would be interested, for instance, in showing
that u∗ofo(x(t)) → uss and y(t) → h(uss) as t →∞.

•

Example 1.3. (Optimization algorithms as dy-
namical systems): Optimization algorithms can be
viewed from the lens of dynamical systems [25, 26,
27]. In some cases, such dynamical systems are
designed using ideas from optimization-based con-
trol. Here we discuss the safe gradient flow [28].
Consider a constrained optimization problem of the
form

min
x∈Rn

f̄(x), (8a)

s.t. ḡ(x) ≤ 0 (8b)

where f̄ : Rn → R and ḡ : Rn → Rm are contin-
uously differentiable functions with Lipschitz con-
tinuous gradients, and ∂ḡ

∂x has full rank for all
x ∈ Rn. We consider the problem of designing

a continuous-time dynamical system such that the
feasible set C = {x ∈ Rn | ḡ(x) ≤ 0} is forward in-
variant and trajectories converge to solutions to (8).
To solve this problem, we consider the integrator
system,

ẋ = F (x, ξ) = ξ, (9)

along with the feedback controller

ξ∗α(x) =argmin
ξ∈Rn

1

2

∥∥ξ +∇f̄(x)
∥∥2

(10a)

s.t
∂ḡ(x)

∂x
ξ ≤ −αḡ(x), (10b)

where α > 0 is a design parameter. The closed-loop
dynamics are referred to as the safe gradient flow
(cf. [28, Section IV.A] for an alternative derivation
of the safe gradient flow using techniques from the
theory of control barrier functions). We note again
that (10) is of the form (1). Establishing regularity
properties of ξ∗α such as continuity or local Lips-
chitzness is critical for the solutions of (10) to exist
and be unique. These properties are then leveraged
to study the convergence of the solutions of (10) to
the optimizers of (8) while ensuring that the feasi-
ble set is forward invariant. •

Example 1.4. (Projected Dynamical Systems):
Projected dynamical systems are a class of systems
whose evolution is constrained to remain inside a
subset C ⊂ Rn. They are are widely used for analyz-
ing and solving nonlinear programs and variational
inequalities [29] and have wide-ranging applications
including network economics (e.g., for analyzing
supply chain networks or financial markets) [30],
power networks [21, 31], anti-windup controllers for
feedback optimization [32], and traffic flows [33], to
name a few. While projected dynamical systems
have been considered in quite general settings, such
as on Riemmanian manifolds [34], or with respect to
oblique projections [35], here we restrict ourselves
to the Euclidean case. In this case, projected dy-
namical systems typically take the form

ẋ = ΠC [x,H(x)] (11)

where H : Rn → Rn is a vector field, and v 7→
ΠC [x, v] is the projection onto the tangent cone of C:

ΠC [x, v] = projTC(x)(v).

Recently, projected dynamical systems have been
reinterpreted from the viewpoint of control theory,
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to design anytime flows solving variational inequal-
ities [36], and for understanding their relationship
to controllers obtained using techniques from the
theory of control barrier functions [37, 38]. For ex-
ample, (11) can be interpreted as the closed-loop
dynamics corresponding to the system,

ẋ = H(x) + u (12)

with the feedback controller

u∗proj(x) = argmin
u∈Rm

‖u‖2 (13a)

s.t. H(x) + u ∈ TC(x). (13b)

Even though feedback controllers of the form (13)
are discontinuous, the resulting closed-loop sys-
tem may still be well behaved. In the case where
C is convex, one can show existence and unique-
ness [29, Theorem 2.5] of Carathéodory solutions
(cf. [39] for notions of solutions to discontinu-
ous systems), and forward invariance of the set C
[40, Corollary 4.8]. With the additional assump-
tion of strong monotonicity of H, asymptotic sta-
bility of the unique equilibrium (11) follows as
well. The control-theoretic interpretation of pro-
jected dynamical systems highlights the complex
relationship between the regularity properties of
optimization-based feedback controllers and the dy-
namical properties of the resulting closed-loop sys-
tem. In particular, it shows that from the perspec-
tive of control design, a feedback controller may
achieve its intended objective (e.g., ensuring invari-
ance of a safe set or stabilization to a desired equi-
librium point) with relatively weak regularity prop-
erties. •

Example 1.5. (Model predictive control): Here we
explain how (1) is also applicable to model predic-
tive controllers. Consider a discrete-time dynamical
system

x+ = F (x, u), (14)

where x ∈ Rn and u ∈ Rm. We consider the
problem of optimally controlling (14) to minimize
a running cost `(x, u) while ensuring the state
and input satisfy constraints x ∈ X ⊂ Rn and
u ∈ U ⊂ Rm. Model predictive control is a
method for solving this problem by solving a finite-
horizon optimal control problem and implement-
ing its solution over (14) in a receding horizon
fashion. Here we show that model predictive con-
trol schemes can be interpreted as a discrete-time

analog of optimization-based feedback control dis-
cussed in previous examples. Let N > 0 be a time
horizon, and x = (x̂0, x̂1, . . . , x̂N ) ∈ Rn(N+1) and
u = (û0, û1, . . . , ûN−1) ∈ RmN denote the state
and input prediction sequences over the time hori-
zon. Consider the following optimization problem

u∗mpc(x) = argmin
u,x

VN (x̂N ) +

N−1∑
k=0

`(x̂k, ûk) (15a)

s.t. x̂k+1 = F (x̂k, ûk) (15b)

x̂k ∈ X , ûk ∈ U (15c)

x̂N ∈ Xf (15d)

x̂0 = x (15e)

k ∈ {0, . . . , N − 1}, (15f)

where VN : Rn → R and Xf ⊂ Rn denote the ter-
minal cost and terminal constraint respectively (we
refer the reader to [3] for conditions on these ingre-
dients to ensure closed-loop stability.) Next, con-
sider the augmented system

x+ = F̄ (x,u) (16a)

= F (x, û0), (16b)

which simply corresponds to implementing the first
input in the sequence u to (14). Note that (15) is
a parametric optimization problem, where the pa-
rameter corresponds to the current state x. Model
predictive control studies the closed-loop system
obtained by the dynamics (16) and the controller
(15). As shown in [41], establishing the continuity
properties of (15) is critical in proving stability and
robustness properties of MPC-based controllers. •

As motivated by the examples provided above,
studying the regularity properties of u∗ is critical
in order to establish different properties of interest
for the closed-loop system, such as

(i) existence and uniqueness of solutions (for dif-
ferent notions of solution, such as classical,
Carathéodory, and Filippov);

(ii) dynamical properties such as forward invari-
ance of safe sets or stabilization to an equilib-
rium point;

(iii) convergence of optimization algorithms such as
the safe gradient flow;

(iv) good performance of online feedback
optimization-based controllers;

(v) stability and robustness properties of MPC
based controllers.
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Additionally, from a practical point of view, guar-
anteeing regularity properties for u∗ such as con-
tinuity or local Lipschitzness is useful to ease the
implementation of such controllers on digital plat-
forms and avoid chattering behavior.

1.1. State of the Art

Having established the importance of character-
izing the regularity properties of (1), we next dis-
cuss the state of the art. There are a variety of
works in the literature [42, 43, 44, 45] and [3, The-
orem 2.7] that use the theory of parametric op-
timization to guarantee local Lipschitz continuity
or other regularity properties of optimization-based
controllers. For example, the results in [42] give
different conditions that ensure continuity and con-
tinuous differentiability of optimization-based con-
trollers. However, they either require the rather
strong assumption of strict complementary slack-
ness, which is not satisfied in many cases of interest,
or are limited to quadratic programs that satisfy a
set of technical conditions. The paper [42] also re-
visits Robinson’s counterexample, first introduced
in [46], in the context of optimization-based con-
trol, which shows that even for optimization prob-
lems defined by well-behaved data (e.g., second-
order continuously differentiable objective function
and constraints, strongly convex objective function,
and feasible set with non-empty interior, which are
widely employed in the design of safe and stabi-
lizing controllers, cf. Example 1.1), the resulting
controller might not be locally Lipschitz. The re-
sult in [43, Theorem 3] is more general but only en-
sures continuity under Slater’s condition and other
regularity properties on the optimization problem.
The regularity results in our previous work [44, 45]
establish different Lipschitz continuity results for
second-order convex programs, but are limited to
this specific type of optimization problems. Fi-
nally, [3, Theorem 2.7] only guarantees continu-
ity of optimization-based controllers derived from
MPC. We also note that in some cases, u∗ can be
computed in closed-form, in which case the reg-
ularity properties of u∗ can be evaluated directly
without having to resort to the theory of paramet-
ric optimization. Examples of such explicitly com-
putable optimization-based controllers are provided
in [47, 12, 13, 48] and [3, Chapter 7]. We would
also like to point out that even though this work is
mostly focused on control laws obtained as the solu-
tion of optimization problems of the form (1), the
regularity properties of other control designs has

also been studied in the literature. For example, the
celebrated Sontag’s Universal Formula [49] provides
a smooth control law for stabilization of control-
affine systems. More recently, similar designs have
been given in the context of safety-critical con-
trol [50, 44, 51, 52].

1.2. Paper Goals and Contributions

Our main goal in writing this paper is to pro-
vide an integrative presentation of insights and re-
sults about the regularity of optimization-based
controllers. We present in Table 1 a comprehen-
sive collection of results that offers the reader in-
terested in using optimization-based controllers a
one-stop destination to assess the regularity proper-
ties of their control design. The paper presents sev-
eral results from the literature, but restated here for
completeness from the perspective of optimization-
based control. The paper also contains many novel
results that help fill gaps in the state of the art.

In what follows, we assume that the control sys-
tem operates in continuous time and is given by

ẋ = F (x, u), (17)

where F : Rn × Rm → Rn is locally Lipschitz.
Hence, the closed-loop system takes the form

ẋ = F (x, u∗(x)). (18)

On the technical level, the contributions of the
paper are as follows. First, we show that under
appropriate constraint qualifications and regularity
properties of the optimization problem (1), the re-
sulting optimization-based controller is locally Lip-
schitz, continuously differentiable, and even ana-
lytic. We provide specific conditions for each of
these cases and observe that any of those condi-
tions guarantee existence and uniqueness of solu-
tions for the closed-loop system. Second, given the
importance of Robinson’s counterexample in show-
ing that optimization-based controllers defined by
well-behaved data might not be locally Lipschitz
and its implications, e.g., for safety-critical con-
trol, cf. Example 1.1 (where most optimization-
based controllers are defined by problem data shar-
ing the properties of Robinson’s counterexample),
we characterize the regularity properties enjoyed
by the parametric optimizer of problems defined
by objective and constraints with the same prop-
erties as in Robinson’s counterexample. We show
that even though such parametric optimizers are
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Assumptions Regularity of u∗ Existence Uniqueness

f, g analytic
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set
LICQ and SCS

analytic
cf. [53]

3 3

f, g ∈ Cp,p(Rn × Rm)
p ∈ Z>0, p ≥ 2

f(x, ·) strongly convex
g(x, ·) convex

Nonempty feasible set
LICQ and SCS

Cp−1

cf. [53]
3 3

f, g ∈ C2,2(Rn × Rm)
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set
LICQ

Locally Lipschitz
cf. [54]

3 3

f, g ∈ C1,2(Rn × Rm)
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set
CR and MFCQ

Locally Lipschitz
cf. [55]

3 3

f, g ∈ C1,2(Rn × Rm)
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set
Slater’s condition

Point-Lipschitz, Hölder,
directionally differentiable
cf. Proposition 3.2, and

locally Lipschitz for scalar
QPs, cf. Proposition 3.3

3

Only in special cases
cf. Proposition 4.3

Corollary 4.4, Example 4.2

f, g ∈ C0,2(Rn × Rm)
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set
Slater’s Condition

Continuous, but might
not be point-Lipschitz

cf. Example 3.4
3 7

f, g ∈ C2,2(Rn × Rm)
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set
LCF ∀x ∈ Rn

Locally bounded
cf. Proposition 3.7, and

measurable
cf. Proposition 3.8

7 (classical)
3 (Filippov)

7 (classical)
7 (Filippov)

f, g ∈ C2,2(Rn × Rm)
f(x, ·) strongly convex ∀x ∈ Rn

g(x, ·) convex ∀x ∈ Rn

Nonempty feasible set

Might be discontinuous
and even unbounded
cf. Examples 3.5, 3.6

7 (classical)
7 (Filippov)

7 (classical)
7 (Filippov)

Table 1: Summary of results on regularity properties of optimization-based controllers. The first column describes the different
assumptions. The second column describes the regularity properties of u∗. The third (resp. fourth) column describes whether
existence (resp. uniqueness) of classical solutions of the closed-loop system (18) is guaranteed (provided that F : Rn×Rm → Rn

is locally Lipschitz). In the last two columns, properties are stated by default for classical solutions. If results are available
for both classical and Filippov solutions, the property for each type of solution is denoted separately. LICQ stands for linear
independence constraint qualification, SCS stands for strict complementary slackness, MFCQ stands for Mangasarian-Fromovitz
Constraint Qualification and CR stands for constant rank condition. The terminology for regularity and constraint qualification
is given in Section 2.
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not locally Lipschitz in general, they enjoy other
weaker regularity properties, which are enough to
guarantee existence of solutions for the closed-loop
system and in some special cases, even uniqueness.
Third, we provide different examples that show how
if the properties in Robinson’s counterexample do
not hold, optimization-based controllers can be dis-
continuous and in some cases, even unbounded.
Fourth, we show that even if the optimization-based
controller is discontinuous, under appropriate reg-
ularity properties of the optimization problem (1),
the parametric optimizer is measurable and locally
bounded, and the closed-loop system has Filippov
solutions. Finally, given a safe set of interest, we
study under what regularity conditions on (1) and
the set, solutions of the closed-loop system remain
in the safe set, both for classical and Filippov solu-
tions.

2. Preliminaries

In this section we discuss different preliminary re-
sults on regularity of functions and constraint qual-
ifications.

2.1. Notions of regularity of functions

Throughout the note, we make use of the follow-
ing notions of regularity of functions.

Definition 2.1. (Notions of Lipschitz continuity):
A function f : Rn → Rq is

• point-Lipschitz at x0 ∈ Rn if there exists a
neighborhood U of x0 and a constant L ≥ 0
such that

‖f(x)− f(x0)‖ ≤ L ‖x− x0‖ , ∀x ∈ U .
(19)

• locally Lipschitz at x0 ∈ Rn if there exists a
neighborhood Ũ of x0 and a constant L̃ ≥ 0
such that

‖f(x)− f(y)‖ ≤ L̃ ‖x− y‖ , ∀x, y ∈ Ũ .
(20)

The notion of point-Lipschitz continuity is used,
for instance, in [7, Section 6.3] and called Lipschitz
stability, without clearly acknowledging the differ-
ence with the notion of local Lipschitz continuity.
Studying point-Lipschitz continuity is natural in
the context of parametric optimization, as one is

normally interested in understanding the changes
in the solution with respect to a fixed value of the
parameter. Locally Lipschitz functions are point-
Lipschitz, but the converse is not true. For in-
stance, the function f : R → R defined by f(x) =
x sin( 1

x ) if x 6= 0 and f(0) = 0 is point-Lipschitz
but not locally Lipschitz at the origin.

Definition 2.2. (Hölder property): A function f :
Rn → Rq has the Hölder property at x0 ∈ Rn if
there exists a neighborhood Û of x0 and constants
C > 0, α ∈ (0, 1] such that

‖f(x)− f(y)‖ ≤ C ‖x− y‖α , ∀x, y ∈ Û . (21)

Note that if f is locally Lipschitz at x0 then it
also has the Hölder property at x0 but the converse
is not true.

Definition 2.3. (Directionally differentiable func-
tion): A function f : Rn → R is directionally dif-
ferentiable if for any vector v ∈ Rn, the limit

lim
h→0

f(x+ hv)− f(x)

h

exists. A vector-valued function is directionally dif-
ferentiable if each of its components is directionally
differentiable.

Let Ω ⊂ Rn. Throughout the paper, a function
ϕ : Ω→ Rd belongs to the set Ck(Ω) if ϕ is k-times
continuously differentiable. In case we view the el-
ements in Ω as vectors of the Cartesian product
Rm1 × Rm2 and ϕ takes the form (x, u) 7→ ϕ(x, u),
the function ϕ ∈ Ck,`(Ω) if ϕ is k-times continu-
ously differentiable with respect to the argument x
and `-times continuously differentiable with respect
to the argument u.

Definition 2.4. (Analytic function): A function
f : Rn → R is analytic in an open set D if for any
x ∈ D there exists a sequence {an}n∈Z≥0

such that
f(x) =

∑∞
n=0 an(x − x0)n for all x in a neighbor-

hood of x0. A vector-valued function is analytic in
an open set D if each of its components is analytic.

Note that an analytic function in an open set D
belongs to Ck(D) for any k ∈ Z≥0. Finally, we
introduce the last notion of regularity, which is
weaker than all the ones presented above and only
requires the function to be bounded in a neighbor-
hood of a point.

Definition 2.5. (Locally bounded function): A
function f : Rn → Rq is locally bounded at x0 ∈ Rn
if there exists a neighborhood Ŭ of x0 and a constant
B > 0 such that ‖f(x)‖ ≤ B for all x ∈ Ŭ .
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2.2. Constraint Qualifications and Conditions

Here we recall different constraint qualifications
and conditions for problem (1) following [56, 7].
Throughout this section we fix x ∈ Rn. Fur-
thermore, given u ∈ Rm, we let I(x, u) be the
set of active constraints at (x, u), i.e., I(x, u) :=
{i ∈ {1, . . . p} | gi(x, u) = 0}. We consider the fol-
lowing:

MFCQ: Mangasarian-Fromovitz Constraint Qual-
ification (MFCQ) holds at (x, u) ∈ Rn ×Rm if
there exists z ∈ Rm such that ∇ugi(x, u)z < 0
for all i ∈ I(x, u);

LICQ: Linear Independence Constraint Qualifica-
tion (LICQ) holds at (x, u) ∈ Rn × Rm if the
vectors {∇ugi(x), i ∈ I(x, u)} are linearly in-
dependent;

CR: Constant Rank condition (CR) holds at
(x, u) ∈ Rn × Rm if for any subset L ⊂
I(x, u) of active constraints, there exists a
neighborhood N of (x, u) such that the family
{∇ugi(x, u), i ∈ L} remains of constant rank
in N ;

SC: Slater’s Condition (SC) holds at x ∈ Rn if
there exists û ∈ Rm such that gi(x, û) < 0 for
all i ∈ {1, . . . , p};

SCS: given x ∈ Rn, let (u∗(x), λ∗(x)) be a KKT
point for the optimization problem in (1).
Then, (u∗(x), λ∗(x)) satisfies Strict Comple-
mentary Slackness (SCS) if there does not ex-
ist i ∈ {1, . . . , p} such that λ∗i (x) = 0 and
gi(x, u

∗(x)) = 0;

LCF: local compact feasibility (LCF) holds at x ∈
Rn if there exists a compact set K ⊂ Rm and
δ > 0 such that for all y ∈ Rn such that
‖y − x‖ < δ, there exists u ∈ K such that
g(y, u) ≤ 0.

3. Regularity of Parametric Optimizers

In this section we discuss how the assumptions
on the functions f and g defining (1) affect the
regularity properties of the resulting controller u∗.
Throughout this section we assume that f and g
belong to C2,2(Rn ×Rm), f(x, ·) is strongly convex
for all x ∈ Rn, g(x, ·) is convex for all x ∈ Rn, and
the set {u ∈ Rm | g(x, u) ≤ 0} is nonempty for all
x ∈ Rn. Such assumptions are very common, for in-
stance, in CBF-based QPs, (cf. Example 1.1), or in

model predictive controllers for linear systems (cf.
Example 1.5). Note that the convexity assumptions
described above guarantee that u∗(x) is a singleton
for every x ∈ Rn.

First, we gather a few existing results from the
literature:

Local Lipschitzness: Under the assumption that
both MFCQ and CR hold at (x, u∗(x)), the
parametric solution u∗ is locally Lipschitz [55,
Theorem 3.6]. The same conclusion can be
obtained if LICQ holds [54, Theorem 4.1] at
(x, u∗(x)).

Continuous Differentiability: Under the as-
sumptions of LICQ and SCS, the parametric
solution u∗ is continuously differentiable [53,
Theorem 2.1]. This last point was already
noted in the optimization-based control liter-
ature in [42, Theorem 1]. In fact, if f and
g belong to Cp,p(Rn,Rm), with p ∈ Z>0, p ≥
2, the proof of [53, Theorem 2.1] can be
adapted using the Implicit Function Theorem
for higher degree of differentiability [57, Propo-
sition 1B.5], to show that the parametric opti-
mizer belongs to Cp−1(Rn).

Analyticity: Similarly, if f and g are analytic in
Rn, then the proof of [53, Theorem 2.1] can
be adapted using the Analytic Function Theo-
rem [58, Theorem 3.3.2], to show that the para-
metric optimizer is analytic in Rn.

If the constraint qualifications given above do not
hold, the parametric optimizer can fail to be locally
Lipschitz. To illustrate this, we revisit next an ex-
ample due to Robinson [46].

Example 3.1. (Robinson’s Counterexample):
In [46], Robinson introduces the following paramet-
ric optimization problem: for x = (x1, x2) ∈ R2,
consider

min
u∈R4

1

2
u>u (22a)

s.t. A(x)u ≥ b(x) (22b)

where

A(x) =


0 −1 1 0,
0 1 1 0,
−1 0 1 0,
1 0 1 x1

 , b(x) =


1
1
1

1 + x2

 .
8



Problem (22) is a quadratic program with strongly
convex objective function, smooth objective func-
tion and constraints, and for which Slater’s condi-
tion holds for every value of the parameter (this
can be shown by noting that û = (0, 0, 2 + |x2|, 0)
satisfies all constraints strictly). Despite these nice
properties, the parametric solution of (22) is not
locally Lipschitz at (x1, x2) = (0, 0). Indeed, let
u∗ : R2 → R4 denote the parametric solution
of (22), with u∗4 : R2 → R its fourth component,
which is given by

u∗4(x1, x2) =


0 if x2 ≤ 0,
x2

x1
if x2 ≥ 0, x1 6= 0,

x2
1

2 ≥ x2,
x1(x2+1)
x2
1+2

otherwise.

Figure 1 depicts u∗4 numerically. The other com-
ponents of u∗ are continuously differentiable and
therefore locally Lipschitz. However, if px1 =
(x1,

1
2x

2
1) and qx1 = (x1, 0), we have

‖u∗4(px1
)− u∗4(qx1

)‖
‖px1

− qx1
‖

=
1

x1
.

Since x1 can be taken to be arbitrarily small, this
shows that u∗ is not locally Lipschitz at the ori-
gin. We also note that [55, Example 3.11] gives
a similar example for a parametric quadratic pro-
gram with a two-dimensional optimization variable,
three-dimensional parameter, strongly convex ob-
jective function, smooth objective function and con-
straints, and for which Slater’s condition holds for
every value of the parameter and the corresponding
parametric optimizer also fails to be locally Lips-
chitz. •

Even though Example 3.1 shows that the para-
metric optimizer of (22) is not locally Lipschitz, it
actually satisfies a set of weaker regularity proper-
ties. The following result characterizes them, in the
general setting of optimization problems satisfying
the same conditions as (22).

Proposition 3.2. (Regularity Properties of Para-
metric Optimizer): Suppose that f and g belong
to C2,2(Rn × Rm). Further assume that for any
x ∈ Rn, f(x, ·) is strongly convex and g(x, ·) is con-
vex. Suppose that SC holds at x0 ∈ Rn. Then,

(i) there exists a neighborhood Vx0
of x0 such that

u∗ is point-Lipschitz at y for all y ∈ Ṽx0
;

(ii) u∗ has the Hölder property at x0;

(iii) u∗ is directionally differentiable at x0.

Proof. First we note that since f(x0, ·) is strongly
convex and g(x0, ·) is convex for all x0, u∗(x0) is
unique and well-defined for all x0 ∈ Rn.

To prove (i) we use [7, Theorem 6.4]. Since
SC holds at x0, by [59, Prop. 5.39], since g(x0, ·)
is convex, MFCQ holds at (x0, u

∗(x0)). Further-
more, since f(x0, ·) is strongly convex and g(x0, ·)
is convex, the second-order condition SOC2 [7, Def-
inition 6.1] holds. All of this, together with the
twice continuous differentiability of f and g im-
ply, by [7, Theorem 6.4], that u∗ is point-Lipschitz
at x0. Now, since g is continuous, there exists a
neighborhood Vx0

of x0 such that SC holds for all
y ∈ Vx0

. By repeating the same argument, u∗ is
point-Lipschitz at y for all y ∈ Vx0

.
Now let us prove (ii). We use [60, Theorem 2.1],

which gives a sufficient condition for the solution
of a variational inequality to have the Hölder prop-
erty. Recall that given a map F : Rm → Rm, and
a constraint set C̄ ⊂ Rm, a variational inequality
refers to the problem of finding u∗ ∈ C̄ such that
(u − u∗)TF (u∗) ≥ 0 for all u ∈ C̄. For every fixed
x ∈ Rn, by taking the map F to be the gradient
of f with respect to u at x, and by taking C̄ to be
the constraint set of (1) at x, a constrained opti-
mization problem of the form (1) can be posed as a
variational inequality, cf. [61]. Since f is twice con-
tinuously differentiable and strongly convex, con-
ditions (2.1) and (2.2) in [60, Theorem 2.1] hold.
Moreover, since MFCQ holds at (x0, u

∗(x0)) (be-
cause SC holds), by [62, Remark 3.6] the constraint
set is pseudo-Lipschitzian [60, Definition 1.1]. All
of this implies by [60, Theorem 2.1] that u∗ has the
Hölder property at x0.

Finally, (iii) follows from the fact that SC implies
MFCQ and [63, Theorem 1].

In Proposition 3.2, note that neither (i) im-
plies (ii) nor the converse. Even though the para-
metric optimizer in Robinson’s counterexample is
not locally Lipschitz, Proposition 3.2 shows that it
enjoys other, slightly weaker, regularity properties.
In particular, this result implies that u∗4, the fourth
component of the parametric optimizer of Robin-
son’s counterexample, is continuous, cf. Figure 1.

Proposition 3.2 also clarifies a confusion that has
arisen in the literature due to the loose use of ter-
minology. Indeed, according to [7, Theorem 6.4],
a parametric optimization problem whose data sat-
isfies the properties of Robinson’s counterexample
has a Lipschitz minimizer! This apparent contra-
diction is rooted in different notions of Lipschitz-
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Figure 1: Numerical depiction of the fourth component of the
parametric optimizer of Robinson’s counterexample, cf. (22).
The plot shows that it is continuous at the origin, in agree-
ment with Proposition 3.2.

ness. Indeed, the notion of Lipschitzness used in [7,
Theorem 6.4] corresponds to point-Lipschitzness.

Next we show that in the special case of paramet-
ric quadratic programs that satisfy the assumptions
of Proposition 3.2 with a scalar optimization vari-
able, the parametric optimizer is locally Lipschitz.

Proposition 3.3. (Scalar parametric quadratic
programs have locally Lipschitz optimizers): Sup-
pose that f ∈ C2,2(Rn × Rm) and and for i ∈
{1, . . . , p}, let g0

i : Rn → R, g1
i : Rn → R belong

to C2(Rn) and

g(x, u) =



g0
1(x)u+ g1

1(x)
...

g0
i (x)u+ g1

i (x)
...

g0
p(x)u+ g1

p(x)

 .

Further assume that for any x ∈ Rn, f(x, ·) is
strongly convex. Suppose that SC holds at x0 ∈ Rn.
Then, u∗ is locally Lipschitz at x0.

Proof. Note that for all i ∈ I(x0, u
∗(x0)), g0

i (x0) 6=
0. Indeed, if g0

i (x0) = 0 and i ∈ I(x0, u
∗(x0)), it

follows that g1
i (x0) = 0, which implies that Slater’s

condition at x0 is violated. Hence, g0
i (x0) 6= 0

for all i ∈ I(x0, u
∗(x0)) and the CR holds at

(x0, u
∗(x0)). Moreover, since Slater’s condition

holds at x0, by [59, Prop. 5.39], since g(x0, ·) is
convex, MFCQ holds at (x0, u

∗(x0)). By [55, The-
orem 3.6], this implies that u∗ is locally Lipschitz
at x0.

Note that Robinson’s counterexample or [55,
Example 3.11] do not contradict Proposition 3.3,

since in those two examples the optimization vari-
able of the quadratic program has dimensions four
and two, respectively. Proposition 3.3 shows that
optimization-based controllers for single-input sys-
tems with affine constraints (e.g., obtained from
CBF or CLF based conditions for control-affine sys-
tems) that satisfy Slater’s conditions are locally
Lipschitz.

The following examples show that the results
from Proposition 3.2 do not hold if the assumptions
are weakened, even slightly.

Example 3.4. (Not point-Lipschitz optimizer
without differentiability of problem data with re-
spect to the parameter): If f and g are not differen-
tiable with respect to the parameter x but the rest
of the assumptions of Proposition 3.2 hold, the fol-
lowing example, inspired by Robinson’s counterex-
ample, shows that the parametric optimizer is not
necessarily point-Lipschitz. Let x = (x1, x2) ∈ R2

and consider (22) with

A(x) =


0 −1 1 0,
0 1 1 0,
−1 0 1 0,

1 0 1
√
|x1|

 , b(x) =


1
1
1

1 + x2

 .
Let ũ∗ : R2 → R4 be its parametric solution and let
ũ∗4 : R2 → R denote its fourth component, which is
given by

ũ∗4(x) =


0 if x2 ≤ 0,
x2√
|x1|

if x2 ≥ 0, x1 6= 0, |x1|
2 ≥ x2,

√
|x1|(x2+1)

|x1|+2 otherwise.

Let x1 > 0 and define px1
= (x1,

|x1|
2 ). Note that

‖ũ∗4(px1
)− ũ∗4(0)‖

‖px1
− 0‖

=
1√

5|x1|
.

Since x1 can be taken to be arbitrarily small, ũ∗ is
not point-Lipschitz at the origin. However, because
f and g, as well as their first and second derivatives
with respect to u, are continuous in u and x, and the
rest of assumptions of Proposition 3.2 hold, then
by [64, Theorem 5.3], the corresponding parametric
optimizer, and hence ũ∗4, is continuous. •

Example 3.5. (Discontinuous optimizer without
Slater’s condition): The following example, taken
from [42, Section VI], shows that if Slater’s condi-
tion does not hold, then continuity of the paramet-
ric optimizer is not guaranteed even if the rest of
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assumptions from Proposition 3.2 do hold:

û∗(x) = argmin
u∈R

1

2
u2 − 2u, (23a)

s.t. xu ≤ 0. (23b)

Indeed, the objective function and constraint
of (23) are twice continuously differentiable, the
objective function is strongly convex and the con-
straint is convex for any x ∈ R. However, Slater’s
condition does not hold at x = 0. In fact,

û∗(x) =

{
2 if x ≤ 0,

0 else,

is discontinuous at x = 0. However, note that û∗ is
bounded. •

Example 3.6. (Unbounded optimizer without
Slater’s condition): The following example,
adapted from [48, Example III.5], shows that if
Slater’s condition fails, not only can the parametric
optimizer fail to be continuous, as shown in Exam-
ple 3.5, but it can even fail to be locally bounded.
Let x = (x1, x2) ∈ R2, a(x) = 2x1x2 + x2

2(1− x2
1 −

x2
2), and consider:

ŭ∗(x) = argmin
u∈R

1

2
‖u‖2 , (24a)

s.t. a(x) + 2x3
2u ≤ 0. (24b)

Note that Slater’s condition does not hold at the
point x = (1, 0). Moreover, ŭ∗ is given by:

ŭ∗(x) =

{
0 if a(x) ≤ 0,

−a(x)
2x3

2
else.

Note that since a(1, 0) = 0, any neighborhood of
(1, 0) contains a point x+ such that a(x+) > 0 and
a point x− such that a(x−) ≤ 0. Moreover, since

lim
(x1,x2)→(1,0)

−a(x)

2x3
2

=∞,

it follows that ŭ∗ is not locally bounded. •

Discontinuous controllers are relevant, and even
necessary, in multiple applications, cf. [39]. When
dealing with discontinuous systems, one needs to
ensure basic properties such as local bounded-
ness and measurability. In the following, we pro-
vide conditions that guarantee these properties for
optimization-based controllers.

The following result gives a condition which
ensures that parametric optimizers are locally
bounded, hence precluding the behavior exhibited
in Example 3.6.

Proposition 3.7. (Conditions for local bounded-
ness): Suppose that f and g belong to C2,2(Rn ×
Rm). Further assume that for any x ∈ Rn, f(x, ·) is
strongly convex, g(x, ·) is convex, and that the feasi-
ble set {u ∈ Rm | g(x, u) ≤ 0} is nonempty. Then,
given x0 ∈ Rn, u∗ is locally bounded at x0 if and
only if LCF holds at x0.

Proof. First suppose that LCF holds at x0. There-
fore, there exists a compact set K ⊂ Rm and δ > 0
such that for all y ∈ Rn such that ‖y − x‖ < δ,
there exists u ∈ K such that g(y, u) ≤ 0. Since
f is continuous and K is compact, there exists
Bf > 0 such that |f(y, u)| < Bf for all u ∈ K
and y ∈ Rn such that ‖y − x0‖ < δ. Since for
all y ∈ Rn such that ‖y − x0‖ < δ, there exists a
feasible u ∈ K, it follows that |f(y, u∗(y))| < Bf
for all y ∈ Rn such that ‖y − x0‖ < δ. This im-
plies that u∗ is locally bounded at x0. Now sup-
pose that u∗ is locally bounded at x0 and suppose,
by contradiction, that LFC does not hold at x0.
Then, for any δ > 0 and compact set K, there ex-
ists y ∈ Rn with ‖y − x‖ ≤ δ and such that all
u ∈ Rm with g(u, y) ≤ 0 satisfy u /∈ K. This means
that there exists a sequence {yn}n∈Z>0 such that
‖yn − x‖ ≤ 1/n and ‖u∗(yn)‖ ≥ n for all n ∈ Z>0,
which implies that u∗ is not locally bounded, hence
reaching a contradiction.

Verifying the local compact feasibility property
can be challenging in general. However, for the par-
ticular case of CBF-based quadratic programs, [48,
Theorem V.1] gives an alternative sufficient condi-
tion for local boundedness of u∗ that only requires
solving a specific linear equation.

Next, we turn our attention to the measurability
properties of u∗.

Proposition 3.8. (Sufficient conditions for mea-
surability): Suppose that f and g belong to
C2,2(Rn × Rm). Further assume that for any x ∈
Rn, f(x, ·) is strongly convex, g(x, ·) is convex,
and that the feasible set {u ∈ Rm | g(x, u) ≤ 0} is
nonempty. Further assume that for every x ∈ Rn
LCF holds at x. Then, u∗ is measurable.

Proof. We use the Measurable Maximum Theo-
rem [65, Theorem 18.19]. We assume that Rn
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and Rm are equipped with the usual Borel σ-
algebras. Since f belongs to C2,2(Rn × Rm), it is
a Carathéodory function (cf. [65, Definition 4.50]).
Therefore, we only need to ensure that the set-
valued map φ : x → {u ∈ Rm | g(u, x) ≤ 0} is a
weakly measurable correspondence (cf. [65, Defini-
tion 18.1]) with nonempty compact values. The
fact that φ takes nonempty values follows from the
fact that the feasible set {u ∈ Rm | g(x, u) ≤ 0}
is nonempty. Moreover, since Proposition 3.7 en-
sures that u∗ is locally bounded at every x ∈ Rn,
without loss of generality we can assume that φ
takes compact values (otherwise, we can define ex-
tra constraints that ensure that the feasible set is
bounded for every x ∈ Rn without changing the
optimizer u∗). Now, to show that φ is a weakly
measurable correspondence, we follow an argument
similar to the proof of [65, Corollary 18.8]. For
every n ∈ Z>0, define the set-valued map φn :
x → {u ∈ Rm | g(u, x) ≤ 1/n}. By Lemma [65,
Corollary 18.8], φn is measurable. Moreover, for
every x ∈ Rn and n ∈ Z>0, φ(x) ⊂ ∂(φn(x))
(where ∂(φn(x)) denotes the boundary of φn(x)),
and φ(x) = ∩∞n=1∂(φn(x)). Furthermore, again
without loss of generality, ∂(φn) has compact val-
ues for every n ∈ Z>0 (again, if that is not the
case we can define extra constraints that ensure
that this holds without changing the optimizer u∗),
and by [65, Theorem 18.4(3)], the intersection φ :
x→ ∩∞n=1∂(φn(x)) is measurable.

The second column in Table 1 summarizes the
different results discussed in this section.

Remark 3.9. (Verifying constraint qualifications
and conditions in practice without knowledge of
the optimizer): To show that u∗ is locally Lip-
schitz at a point x ∈ Rn using [55, Theorem
3.6], we need to verify that both MFCQ and CR
hold at (x, u∗(x)). Similarly, [54, Theorem 4.1]
(resp. [53, Theorem 2.1]) require the verification of
LICQ (resp. LICQ and SCS) at (x, u∗(x)). These
results require knowledge of u∗(x) to verify the cor-
responding property holds at x. However, in sev-
eral applications it can be useful to know the re-
gions where the controller u∗ is discontinuous (for
instance, to design safety-critical controllers that
avoid such regions). Slater’s condition is useful for
this purpose because Proposition 3.2 guarantees dif-
ferent regularity properties of u∗ at x without re-
quiring knowledge of u∗(x) (assuming that the ex-
tra conditions on differentiability and convexity of

the objective function and constraints in Proposi-
tion 3.2 also hold). Moreover, in the special case
where the constraints in (1) are affine, i.e.,

g(x, u) =



g0
1(x)Tu+ g1

1(x)
...

g0
i (x)Tu+ g1

i (x)
...

g0
p(x)Tu+ g1

p(x)

 ,

for i ∈ {1, . . . , p} and g0
i : Rn → Rm and g1

i : Rn →
R in C2(Rn), then [66] shows that by letting c∗x be
the optimal value of the linear program

max
u∈Rm

m∑
i=1

|ui| (25a)

s.t. ui ≥ 0, i ∈ {1, . . . ,m}, (25b)
m∑
i=1

uig
0
i (x) = 0, (25c)

m∑
i=1

uig
1
i (x) = 0. (25d)

then Slater’s condition holds at x if and only if
c∗x = 0. Hence, (25) can be solved before solving (1)
to verify that u∗ satisfies the regularity properties
in Proposition 3.2. •

4. Existence and Uniqueness of Solutions
under Optimization-Based Controllers

In this section, we leverage the regularity prop-
erties established in Section 3 to study existence
and uniqueness of solutions for the closed-loop
system (18) under the optimization-based con-
troller u∗.

First, we note that by the Picard-Lindelöf the-
orem [19, Theorem 2.2], any of the assumptions
described in Section 3 that guarantee that u∗ is lo-
cally Lipschitz at a point x0 also guarantee that the
closed-loop system (18) has a unique solution with
initial condition at x0 for sufficiently small times.

The following result establishes existence of solu-
tions under weaker assumptions.

Proposition 4.1. (Existence of classical solutions
for the closed-loop system): Suppose that f and g
belong to C2,2(Rn × Rm). Further assume that for
any x ∈ Rn, f(·, x) is strongly convex, g(·, x) is
convex and SC holds at x0 ∈ Rn. Let F : Rn ×
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Rm → Rn be locally Lipschitz. Then, there exists
δ0 > 0 such that the differential equation (18) has
at least one solution x : (−δ0, δ0)→ Rn with initial
condition x(0) = x0.

Proof. By Proposition 3.2, u∗ has the Hölder prop-
erty at x0 and there exists a neighborhood Vx0

of x0

such that u∗ is point-Lipschitz at y for all y ∈ Vx0 .
Both of these properties imply that u∗ is continu-
ous in a neighborhood of x0. The result follows by
Peano’s existence theorem [67, Theorem 2.1].

Next, we study uniqueness of solutions under the
assumptions of Proposition 4.1. We first note that
the Hölder property does not imply uniqueness,
even in simple one-dimensional examples. For ex-
ample, the differential equation ẋ = x1/3 has the
Hölder property at 0 but infinitely many solutions
starting from the origin. The next example shows
that, in general, point-Lipschitz continuity does not
imply uniqueness of solutions either.

Example 4.2. (Point-Lipschitz differential equa-
tion with non-unique solutions): Let u∗ : R2 → R4

be the parametric optimizer of Robinson’s coun-
terexample. Consider the dynamical system

ẋ1 =
1

2
, (26a)

ẋ2 = u∗4(x1, x2), (26b)

with initial condition (x1(0), x2(0)) = (0, 0). By
Proposition 3.2, the vector field in (26) is point-
Lipschitz at the origin. However, (26) admits the
following two distinct solutions starting from the
origin: y1(t) := ( 1

2 t, 0) and y2(t) := ( 1
2 t,

1
8 t

2), cf.
Figure 2. •

Hence, in general the assumptions of Proposi-
tion 4.1 are not sufficient to ensure uniqueness of
solutions of the closed-loop system. Interestingly,
the next result shows that point-Lipschitz continu-
ity guarantees uniqueness of solutions starting from
equilibria.

Proposition 4.3. (Point-Lipschitz continuity and
uniqueness): Let F̃ : Rn → Rn be point-Lipschitz
at x0 ∈ Rn and F̃ (x0) = 0. Then the function
x(t) = x0 for all t ≥ 0 is the unique solution to the
differential equation ẋ = F̃ (x) with initial condition
x(0) = x0.

Proof. Let δ > 0 and L be the point-Lipschitz con-
tinuity constant of F̃ and take δ < 1

L . Suppose

Figure 2: The blue arrows depict the vector field (26). The
dashed red and green curves depict the two solutions y1 and
y2 starting from the origin, where the vector field is point-
Lipschitz but not locally Lipschitz.

that there exists another solution y : [0, δ) → Rn
starting from x0. Then, supt∈[0,δ) ‖y(t)− x0‖ > 0.
Moreover,

sup
t∈[0,δ)

‖y(t)− x0‖ = sup
t∈[0,δ)

∥∥∥∥∫ t

0

F̃ (y(s))ds

∥∥∥∥ =

sup
t∈[0,δ)

∥∥∥∥∫ t

0

(
F̃ (y(s))− F̃ (x0)

)
ds

∥∥∥∥ ≤
sup
t∈[0,δ)

∫ t

0

L ‖y(s)− x0‖ ds ≤

Lδ sup
t∈[0,δ]

‖y(t)− x0‖ < sup
t∈[0,δ]

‖y(t)− x0‖

where in the last inequality we have used the fact
that supt∈[0,δ) ‖y(t)− x0‖ > 0. We hence reach a
contradiction, which means that the constant solu-
tion is the only solution for t ∈ [0, δ). By repeating
the same argument at time δ, we can extend this
constant solution for all positive times.

This result implies that in one dimension, point-
Lipschitz ODEs have unique solutions.

Corollary 4.4. (Point-Lipschitz continuity implies
uniqueness in one dimension): Let F̃ : R → R
be continuous in a neighborhood of x0 and point-
Lipschitz at x0. Then, the differential equation
ẋ = F̃ (x) with initial condition x(0) = x0 has a
unique solution.

Proof. If F̃ (x0) 6= 0, by [68, Theorem 1.2.7], the dif-
ferential equation has only one solution. If F̃ (x0) =
0, the result follows from Proposition 4.3.
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If Slater’s condition does not hold but the rest of
assumptions of Proposition 4.1 hold, Example 3.5
shows that u∗ can be discontinuous, in which case
neither existence nor uniqueness of solutions is
guaranteed. In the case where f and g are not dif-
ferentiable with respect to the parameter, but the
rest of assumptions of Proposition 4.1 hold, Exam-
ple 3.4 shows that u∗ is continuous but not necessar-
ily point-Lipschitz. Therefore, in this case existence
is guaranteed but uniqueness is not.

Note that so far, we have only considered exis-
tence and uniqueness for classical solutions. For
discontinuous dynamical systems, other notions of
solution, such as Carathéodory or Filippov solu-
tions, can be defined, cf. [39]. The following result
gives conditions on (1) that ensure the existence of
Filippov solutions for (18).

Proposition 4.5. (Existence of Filippov solutions
for the closed-loop system): Suppose that f and g
belong to C2,2(Rn × Rm). Further assume that for
any x ∈ Rn, f(·, x) is strongly convex, g(·, x) is
convex and the feasible set is nonempty. Finally
suppose that for every x ∈ Rn, LCF holds at x and
F : Rn × Rm → Rn is locally Lipschitz. Then for
any x ∈ Rn, there exists δx > 0 such that (18) has
at least one Filippov solution y : (−δx, δx) → Rn
with initial condition y(0) = x.

Proof. By Propositions 3.7 and 3.8, the assump-
tions ensure that u∗ is measurable and locally
bounded. The result follows from [69, Theorem
7].

A weaker condition to ensure that Filippov solu-
tions are unique is that the closed-loop system (18)
is essentially one-sided Lipschitz [39]. Although it
is known how to verify this property for projected
dynamical systems (see e.g., [29, proof of Theo-
rem 2.7] for the Euclidean case, and [34, Proposi-
tion 6.12] for the Non-Euclidean case), to the best
of our knowledge there exist no results in the para-
metric optimization literature that guarantee that
the parametric optimizer u∗, or the closed-loop dy-
namics, satisfies this property.

Finally, we note that if f is not strongly convex or
g is not convex, the optimizer u∗ is not guaranteed
to be single-valued, which means that the usual no-
tions of regularity of the controller and of solutions
of the closed-loop system are not well defined. The
third and fourth columns of Table 1 summarize the
results presented in this section.

5. Forward Invariance Properties of
Optimization-Based Controllers

In this section we study conditions that guarantee
the forward invariance of a set for the closed-loop
system under an optimization-based controller. Re-
call the notion of tangent cone to a set C ⊂ Rn:

The basic result concerning forward invariance is
the following:

Theorem 5.1. (Nagumo’s Theorem [70, 71]): Let
F̃ : Rn → Rn and consider the system ẋ = F̃ (x).
Assume that, for each initial condition in a set
D ⊂ Rn, it admits a unique forward complete solu-
tion (i.e., a unique solution defined for all positive
times). Let C ⊂ D ⊂ Rn be a closed set. Then
the set C is forward invariant for the system if and
only if F̃ (x) ∈ TC(x) for all x ∈ C (here, TC(x) is
the tangent cone2 to C ⊂ Rn at x ∈ Rn).

The condition that F̃ (x) ∈ TC(x) for all x ∈ C
is called the sub-tangentiality condition, and can be
enforced using the constraints of an optimization-
based feedback controller of the form (1). We show
how in the following. Suppose that C is parame-
terized as C = {x ∈ Rn | hj(x) ≥ 0, 1 ≤ j ≤ p},
where hj : Rn → R are continuously differentiable
for j = 1, . . . , p, and the dynamics take the form

ẋ = F (x, u) = F0(x) +

m∑
i=1

uiFi(x), (27)

for smooth functions Fi : Rn → Rn for i ∈
{0, . . . ,m}. Next, define A(x) ∈ Rp×m and b(x) ∈
Rp as

A(x) =

LF1
h1(x) . . . LFm

h1(x)
...

. . .
...

LF1
hp(x) . . . LFm

hp(x)

 ,

b(x) =

 −α(h1(x))− LF0
h1(x)

...
−α(hm(x))− LF0

hm(x)

 ,
where α is a class-K function. Let Aj(x) denote the
jth row of A(x), and for J ⊂ {1, . . . , p}, let AJ(x)
denote the matrix consisting of the rows of A(x)
corresponding to j ∈ J .

In the literature on optimization-based control
design [11], the feasibility of the system Aj(x)u ≥

2Recall that TC(x) =
{
v ∈ Rn

∣∣ lim inf
h→0

dist(x+hv,C)
h

= 0
}

.
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bj(x) for all x ∈ Rn such that hj(x) ≥ 0 is equiv-
alent to hj being a control barrier function for the
set {x ∈ Rn | hj(x) ≥ 0}. Since we are consid-
ering the case where C is possibly parameterized
by multiple inequalities, here we make the stronger
assumption that the system A(x)u ≥ b(x) (where
the inequality holds component-wise) is feasible for
all x ∈ C. In this case, if C satisfies an appropri-
ate constraint qualification condition (e.g., MFCQ
or LICQ) and u∗ : Rn → Rm is a feedback con-
troller such that A(x)u∗(x) ≥ b(x) for all x ∈ C,
then the closed-loop dynamics satisfies the sub-
tangentiality condition F (x, u∗(x)) ∈ TC(x). Such
a controller can be obtained from the solution of
a parametric optimization problem of the form (1)
where g(x, u) = b(x)−A(x)u.

To show invariance invoking Theorem 5.1, one
needs to additionally ensure that the closed-loop
dynamics has unique solutions. The conditions dis-
cussed in Section 4 and summarized in Table 1 can
be translated into easily checkable conditions on the
objective function, the matrix A(x), and the vector
b(x). The following result uses [55, Theorem 3.6]
to ensure uniqueness, and therefore forward invari-
ance.

Theorem 5.2. (Sufficient conditions for forward
invariance with respect to closed-loop dynamics):
Consider the dynamics (27) and the optimization
problem (1) where f ∈ C1,2(Rn × Rm) is strongly
convex, and g(x, u) = b(x)−A(x)u. Assume

• For all x ∈ C, there exists u ∈ Rm such
that A(x)u > b(x), and

• For all x ∈ C, there is an open set Ux ⊂ Rn
containing x such that, for all J ⊂ {1, . . . , p},
the matrix AJ(y) has constant rank for all y ∈
Ux.

Then the closed-loop system under the
optimization-based controller (1) has unique
solutions, and C is forward invariant.

In the case where the closed-loop dynamics are
point-Lipschitz, solutions are not necessarily unique
and therefore forward invariance of C cannot be
guaranteed by Theorem 5.1. In fact, the following is
an example of a system where the sub-tangentiality
condition holds but there exist solutions starting
in C that eventually leave.

Example 5.3. (Point-Lipschitz differential equa-
tion violating forward invariance): Let C =

{
(x1, x2) ∈ R2 | x2 ≤ 0

}
and consider the system

with the feedback controller defined in Example 4.2.
Because C satisfies LICQ, the tangent cone can
be computed as TC(x1, x2) = R2 if x2 < 0, and
TC(x1, 0) = {(ξ1, ξ2) | ξ2 ≤ 0}. The closed-loop
system satisfies F (x, u∗(x)) = ( 1

2 , u
∗
4(x1, x2)) ∈

TC(x1, x2) for all (x1, x2) ∈ C. However, the so-
lution y2(t) = ( 1

2 t,
1
8 t

2) satisfies y2(0) ∈ C and
y2(t) /∈ C for all t > 0. •

Example 4.2 is problematic because it shows that
even if the sub-tangentiality condition for a safe
set C is included as one of the constraints of the
optimization-based controller, if the solutions of the
closed-loop system are not unique, some of the solu-
tions might leave the safe set C. However, using the
notion of minimal barrier functions [72], the follow-
ing result gives a condition for forward invariance
that can be applied to systems with non-unique so-
lutions.

Theorem 5.4. (Minimal Barrier Functions, [72,
Theorem 1]): Let F̃ : Rn → Rn be continuous and
consider the system ẋ = F̃ (x). Let h : Rn → R
be a continuously differentiable function and let
C = {x ∈ Rn | h(x) ≥ 0} be a nonempty set. If h
is a minimal barrier function, cf. [72, Definition 2],
then any solution of ẋ = F̃ (x) with initial condition
in C remains in C for all positive times.

A simple scenario in which h is a minimal bar-
rier function is if there exists a strictly increasing
function α : R→ R with α(0) = 0 and an open set
D with C ⊂ D such that ∇h(x)>F̃ (x) ≥ −α(h(x))
for all x ∈ D. Such a set D and class K func-
tion α do not exist in Example 5.3. Since Theo-
rem 5.4 only requires F̃ to be continuous, the sys-
tem ẋ = F̃ (x) might have multiple solutions start-
ing from the same initial condition. However, the
result ensures that if the initial condition is in C,
then all solutions remain in C for all positive times.
Moreover, since point-Lipschitz functions are con-
tinuous, Theorem 5.4 can be applied to differen-
tial equations defined by point-Lipschitz functions.
Therefore, if one of the constraints in (1) corre-
sponds to the minimal control barrier function con-
dition of a function h, and if the resulting controller
is point-Lipschitz (e.g., by satisfying the hypothesis
of Proposition 3.2), then all solutions of the closed-
loop system that start in C := {x ∈ Rn | h(x) ≥ 0}
remain in C for all positive times.

Finally, we also note that if u∗ is discontinuous,
the closed-loop system might not have unique solu-
tions and hence the assumptions of Theorem 5.1
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will not hold. Therefore, this result cannot be
used to guarantee forward invariance of sets. How-
ever, the following result gives a sufficient condition
for forward invariance of sets under Filippov solu-
tions. It follows as an adaptation of [73, Theorem
1], which gives a sufficient condition for forward in-
variance of sets under hybrid systems.

Theorem 5.5. (Forward invariance under Filippov
solutions of closed-loop dynamics): Let h : Rn → R
be a continuously differentiable function and C :=
{x ∈ Rn | h(x) ≥ 0}. Further let D ⊂ Rn be a set
containing C such that, for each initial condition
x0 in D, there exists a forward complete Filippov
solution of (18) with initial condition at x0. Let
P(Rn) denote the collection of subsets of Rn and
let F : Rn → P(Rn) be the Filippov set-valued map
of (18), i.e.,

F(x) :=
⋂
δ>0

⋂
µ(S)=0

co

 ⋃
y|‖y−x‖≤δ

F (y, u∗(y))\S

 ,

where co denotes the convex closure and µ de-
notes the Lebesgue measure. Further assume
that there exists a neighborhood Uf of ∂C =
{x ∈ Rn | h(x) = 0} such that

∇h(x)T η ≥ 0, ∀x ∈ Uf\C and ∀η ∈ F(x). (28)

Then, all Filippov solutions of (18) with initial con-
dition at C remain in C for all positive times.

In particular, Theorem 5.5 ensures that under
the assumptions of Proposition 4.5, and if Filip-
pov solutions are defined for all positive times, then
the sub-tangentiality-like condition (28) guarantees
forward invariance of Filippov solutions. We note
also that Theorem 5.5 is possibly conservative, and
tighter conditions that guarantee forward invari-
ance for Filippov solutions could be developed using
an adapted notion of minimal barrier functions for
discontinuous systems.

6. Conclusions and Outlook

We have provided an integrative presentation of
insights and results about the regularity properties
of optimization-based controllers, and their impli-
cation in different properties of interest of control
systems.

Regularity properties: Under appropriate con-
straint qualifications and conditions on the data

that defines the optimization problem, we have
shown that optimization-based controllers are lo-
cally Lipschitz, continuously differentiable, and
even analytic. We have also characterized the
properties enjoyed by parametric optimizers aris-
ing from optimization problems defined by second-
order continuously differentiable objective function
and constraints, strongly convex objective function,
and feasible set with nonempty interior (the same
properties as in Robinson’s counterexample). We
have shown that, even though such parametric op-
timizers might not be locally Lipschitz, they enjoy
other important regularity properties, like point-
Lipschitz continuity. Even if the optimization-
based controller is discontinuous, under appropri-
ate conditions on the optimization problem data,
we have shown that it is measurable and locally
bounded.

Implications on the resulting closed-loop systems:
When our results are applied to the motivating ex-
amples in Section 1, they improve upon the exist-
ing results in the literature by providing a more
detailed description of the regularity of the corre-
sponding controller under a wider range of condi-
tions. Building on the results on regularity proper-
ties of optimization-based controllers, we have stud-
ied the existence and uniqueness of classical and
Filippov solutions of closed-loop systems obtained
from an optimization-based controller, and iden-
tified conditions ensuring that all (not necessarily
unique) solutions remain in a safe set of interest.

Outlook: The results presented in this work
show that the regularity properties of optimization-
based controllers are determined by the smooth-
ness/convexity and constraint qualification prop-
erties of the optimization problems defining them.
This opens the door to the possibility of designing
optimization problems with the appropriate con-
ditions and constraint qualification properties in
order to endow the associated optimization-based
controller with certain desired regularity properties.
For example, in the context of safety-critical con-
trol, it is sufficient to find safe sets and control bar-
rier functions for those sets to guarantee that an as-
sociated control barrier function based controller is
locally Lipschitz. In certain cases, one can guaran-
tee that these control objectives are obtained with-
out continuity or even uniqueness of solutions to the
resulting closed-loop systems. Characterizing con-
ditions on the objective function and constraints to
ensure that control objectives are achieved even in
the absence of local Lipschitz continuity is an im-
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portant direction for future work. In particular,
understanding one-sided Lipschitzness in the con-
text of parametric optimization is important in the
context of safety-critical control, since uniqueness
of solutions allows one to verify forward-invariance
of a safe set via Nagumo’s Theorem. Besides the
examples mentioned in Section 1, the relevance of
the results presented herein also applies to other ar-
eas of systems and control, where controllers need
to be designed with desirable regularity properties,
such as backstepping [74], where virtual controllers
need to be differentiated at the intermediate layers
to construct a composite Lyapunov or barrier [50]
function for the composite system. Other ideas for
future work include improving further the results
presented in this paper to more specific classes of
problems, such as CBF-based quadratic programs
or second-order convex programs, as well as MPC-
based controllers. We also plan to relax the dif-
ferentiability and convexity assumptions considered
throughout this paper and give regularity results for
set-valued optimizers using the theory of continu-
ous selections.
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