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Abstract— This paper studies the dynamical properties of
closed-loop systems obtained from control barrier function-
based safety filters. We provide a sufficient and necessary
condition for the existence of undesirable equilibria and show
that the Jacobian matrix of the closed-loop system evaluated at
an undesirable equilibrium always has a nonpositive eigenvalue.
In the special case of linear planar systems and ellipsoidal
obstacles, we give a complete characterization of the dynam-
ical properties of the corresponding closed-loop system. We
show that for underactuated systems, the safety filter always
introduces a single undesired equilibrium, which is a saddle
point. We prove that all trajectories outside the global stable
manifold of such equilibrium converge to the origin. In the fully
actuated case, we discuss how the choice of nominal controller
affects the stability properties of the closed-loop system. Various
simulations illustrate our results.

I. INTRODUCTION

Modern autonomous systems and cyber-physical systems
– from self-driving vehicles and robotic systems to critical
infrastructures – must provide safety guarantees while per-
forming complex operational tasks [1]. A popular approach
to promote safety, where the term “safety” here refers to the
ability to render a predefined set of states forward invariant,
relies on the so-called safety filters; these filters take a
potentially unsafe nominal controller, designed to provide
stability or optimality guarantees, and minimally modify it
to account for safety constraints. While the filtered controller
ensures safety, it may not preserve the stability or optimality
properties of the nominal controller. This challenge is the
main motivation for this work.

Literature Review: One of the main approaches for ren-
dering a given set forward invariant is via Control Barrier
Functions (CBFs) [2]–[5]. Given a nominal controller with
desirable properties such as asymptotic stability of an equi-
librium, CBFs acts on top of the nominal controller to ensure
safety. This technique is often referred to as a safety filter [6].
The main research question here is whether the closed-loop
system with safety filters retains the stability guarantees
of the nominal controller. This was studied in, e.g., [7],
which provides an estimate of the region of attraction of the
equilibrium. However, it is unclear how conservative such
estimate may be for general systems. The seminal works
in [8]–[12] show that designs similar to safety filters can
introduce undesired equilibria that may be stable or unstable.

∗Equal contribution of the authors. Y. Chen and E. Dall’Anese are
with the Department of Electrical and Computer Engineering at Boston
University; P. Mestres and J. Cortés are with the Department of Mechanical
and Aerospace Engineering at the University of California San Diego.

This work was supported by the AFOSR Award FA9550-23-1-0740.

Statement of Contributions: The goal of this paper is to
advance the understanding of the dynamical properties of
closed-loop systems obtained from CBF-based safety filters.
The main contribution of the paper is two-fold:
(i) Our first contribution is to characterize the undesired
equilibria that emerge in the closed-loop system formed
by a control-affine dynamical system, a stabilizing nominal
controller, and a CBF-based safety filter. General obstacles
are considered (this is the subject of Section III).
(ii) Next, we focus our attention to linear time-invariant
(LTI) planar systems (Section IV). We show that, for these
systems, the dynamical properties of systems with ellipsoidal
obstacles are equivalent to those of systems with circular
obstacles. For underactuated LTI planar systems, we give a
complete characterization of the trajectories of the closed-
loop system. We show that such systems always have a
single undesired equilibrium. Moreover, we show that such
undesired equilibrium is a saddle point and show that all
trajectories that lie outside the global stable manifold of this
equilibrium converge to the origin. For fully actuated LTI
planar systems, we show that the closed-loop system can
have up to three undesired equilibria, and characterize their
stability properties.

Additionally, we show that in the fully actuated case there
always exists a nominal controller (which can be explicitly
computed) that makes the closed-loop system have a single
undesired saddle point equilibrium. Therefore, our findings
can be used to inform the design of the nominal controller.

II. PRELIMINARIES AND PROBLEM STATEMENT

Notation. We denote by N>0, R and R≥0 the set of
positive integers, real, and nonnegative numbers. We use
bold symbols to represent vectors and non-bold symbols to
represent scalar quantities; 0n represents the n-dimensional
zero vector. Given x ∈ Rn, ∥x∥ denotes its Euclidean norm.
Given a matrix G ∈ Rn×n, ∥x∥G =

√
xTGx. A function

β : R → R is of extended class K∞ if β(0) = 0, β is strictly
increasing and lim

s→±∞
β(s) = ±∞. Given a set S ⊂ Rn,

we denote by Int(S) and ∂S the interior and boundary of
S, respectively. For a continuously differentiable function
h : Rn → R, ∇h(x) denotes its gradient at x.

Consider the system ẋ = f(x), with f : Rn → Rn

locally Lipschitz. Then, for any initial condition x0 ∈ Rn at
time t0, there exists a maximal interval of existence [t0, t1)
such that x(t;x0) is the unique solution to ẋ = f(x)
on [t0, t1), cf. [13]. For f continuously differentiable and
x∗ an equilibrium point of f (i.e., f(x∗) = 0n), x∗ is
degenerate if the Jacobian of f evaluated at x∗ has at least



one eigenvalue with real part equal to zero (otherwise, we
refer to x∗ as hyperbolic). Given a hyperbolic equilibrium
point with k ∈ Z>0 eigenvalues with negative real part, the
Stable Manifold Theorem [14, Section 2.7] ensures that there
exists an invariant k-dimensional manifold S for which all
trajectories with initial conditions lying on S converge to x∗.
The global stable manifold at x∗ is defined as Ws(x

∗) =⋃
{t≤0, x0∈S}

x(t;x0).

A. Control barrier functions and safety filters

Consider a control-affine dynamical system of the form

ẋ = f(x) + g(x)u, (1)

where f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz functions, x ∈ Rn is the state, and u ∈ Rm is the
input.

Definition 1 (Control Barrier Function): Let h : Rn →
R be a continuously differentiable function, and define the
set C = {x ∈ Rn : h(x) ≥ 0}. The function h is a CBF
of C for the system (1) if there exists an extended class K∞
function α such that, for all x ∈ C, there exists u ∈ Rm

satisfying ∇h(x)⊤(f(x) + g(x)u) + α(h(x)) ≥ 0. □

Suppose that a nominal controller u = k(x) is designed
so that the system ẋ = f̃(x) := f(x) + g(x)k(x) renders
the origin globally asymptotically stable (this is without loss
of generality). Consider the system

ẋ = f̃(x) + g(x)v(x), (2)

where the map x 7→ v(x) is defined as:

v(x) = arg min
θ∈Rm

∥θ∥2G(x) (3)

s.t. ∇h(x)⊤(f(x) + g(x)(k(x) + θ)) + α(h(x)) ≥ 0

with G : Rn → Rm×m continuously differentiable and
positive definite for all x ∈ Rn. We assume the following.

Assumption 1 (Origin in the interior of C): The set {x ∈
Rn : h(x) = 0, f̃(x) = 0n} is empty and h(0n) > 0. □

Assumption 2 (Feasibility): There exists an extended class
K∞ function α such that g(x)⊤∇h(x) ̸= 0 for all x in
{x ∈ Rn : h(x) ≥ 0, ∇h(x)⊤f(x) + α(h(x)) ≤ 0}. □

Assumption 2 ensures that (3) is feasible for all x ∈ Rn

and therefore v(x) is well-defined for all x ∈ Rn. Moreover,
under Assumption 2, and using arguments similar to [15,
Lemma III.2], one can show that v(x) is locally Lipschitz.
Assumption 2 also ensures that ∂h

∂x (x) ̸= 0n for all x ∈ ∂C.
From [3, Thm. 2], it follows that the system (2) with the
controller v(x) renders the set C forward invariant. Because
of this feature, and because C is modeling a set of safe states,
v(x) is typically referred to as safety filter.

B. Problem Statement

We consider a control-affine dynamical system as in (1)
and a safe set C ⊂ Rn defined as the 0-superlevel set
of a differentiable function h : Rn → R. Assume that
h is a CBF of C for system (1), and that Assumptions 1
and 2 hold. Studying the dynamical behavior of (2) is

challenging. Indeed, as noted in [7], it does not inherit the
global asymptotic stability properties of the controller k, and
can even have undesired equilibria [8]–[11]. However, most
of these works focus on studying conditions under which
such undesired equilibria exist or can be confined to specific
regions of interest, but do not study dynamical properties of
the closed-loop system. Hence the goal of this paper is as
follows:

Problem 1: Given system (1) with a stabilizing nominal
controller k(x) and the safety filter v(x), characterize the
dynamical properties of (2) (such as undesirable equilibria
and their regions of attraction, limit cycles and region of
attraction of the origin) and investigate how these properties
are determined by the original closed-loop system ẋ =
f(x) + g(x)k(x). □

In the following section, we consider the system (2) and
characterize its undesired equilibria. In Section IV, given
the complexity of solving Problem 1, we then restrict our
attention to linear planar systems.

III. CHARACTERIZATION OF UNDESIRABLE EQUILIBRIA

We start by reformulating the expression for the unique
optimal solution v(x) of the quadratic program (3). Let
η(x) = ∇h(x)T (f(x) + g(x)k(x)) + α(h(x)). Then,

v(x) =

{
0m, if η(x) ≥ 0,

ū(x), if η(x) < 0,
(4)

where ū(x) := −η(x)G(x)−1g(x)⊤∇h(x)
∥g(x)⊤∇h(x)∥2

G(x)−1
. We use this expres-

sion in the following result, which provides a necessary and
sufficient condition for undesirable equilibria of (2).

Lemma 1: (Conditions for undesirable equilibria): Let
Assumptions 1 and 2 be satisfied. Let p0 ∈ Rn be such
that f̃(p0) ̸= 0n. Then, p0 is an equilibrium of (2) if and
only if there exists δ < 0 such that

h(p0) = 0 and (5)

f̃(p0) = δg(p0)G(p0)
−1g(p0)

⊤∇h(p0) . □

Proof: If there exists p0 and δ < 0 satisfying (5), then
it holds that that δ = ∇h(p0)

⊤f̃(p0)
∥g(p0)⊤∇h(p0)∥2

G(x)−1
, from which it

follows that f̃(p0) + g(p0)ū(p0) = 0n and η(p0) < 0.
Hence, p0 is an equilibrium of (2).

On the other hand, if p0 is an equilibrium of (2) and
f̃(p0) ̸= 0n, then f̃(p0) + g(p0)ū(p0) = 0n. It follows that

0 = ∇h(p0)
⊤(f̃(p0) + g(p0)ū(p0)) = −α(h(p0)),

by which we get the first equation.
In addition, we get that η(p0) < 0 and f(p0) =

η(p0)
∥g(p0)⊤∇h(p0)∥2

G(x)−1
g(p0)G(p0)

−1g(p0)
⊤∇h(p0), which

implies the second equation.
This result has the same flavor as [9, Theorem 2] and [10,

Proposition 5.1], which characterize the undesired equilibria
for related, but different, safety filter designs.

By Lemma 1, we can define the set of potential undesir-
able equilibria of (2) as:

E := {x : ∃ δ ∈ R s.t. (x, δ) solves (5)} .



On the other hand, the set of undesirable equilibria is:

Ê := {x : ∃ δ < 0 s.t. (x, δ) solves (5)} ⊂ E .

The term undesirable stems from the fact that these equi-
libria are different from the origin, which is the equilibrium
point where the system needs to be stabilized. By Lemma 1,
it follows that determining the equilibrium points of system
(2) is equivalent to solving (5) and checking the sign of
δ. For a solution (p0, δp0

) to (5), we refer to δp0
as the

indicator of p0, since the sign of δp0
determines whether

p0 is a new, undesirable, equilibrium of the system with
the CBF filter. Additionally, we show that the value of the
indicator is useful for determining the stability properties
of the undesirable equilibrium. For a given undesirable
equilibrium p0 of (2), the indicator can be computed as
δp0

= ∇h(p0)
⊤f̃(p0)

∥g(p0)⊤∇h(p0)∥2
G(x)−1

. In addition, Assumption 1

ensures that no solution of (5) has δ = 0.
Under appropriate conditions, the next result shows that

we can compute the Jacobian of f̃(x) + g(x)v(x) at x ∈ Ê
and find one of its eigenvalues.

Lemma 2: (Jacobian at the undesirable equilibrium): Let
Assumptions 1 and 2 be satisfied and assume that D =
g(x)G(x)−1g(x)⊤ is a constant matrix, f̃(x), α(·) are
differentiable and h(x) is twice differentiable. For any x ∈ Ê ,
the Jacobian of f̃(x) + g(x)v(x) evaluated at x is

J |x∈Ê= Jf̃ − D∇h(x)∇h(x)⊤

∇h(x)⊤D∇h(x)
[Jf̃ + α′(0)In]

− D

∇h(x)⊤D∇h(x)
[Hh∇h(x)⊤f̃(x)−∇h(x)f̃(x)⊤Hh],

where Jf̃ is the Jacobian matrix of f̃(x) and Hh is the
Hessian of h(x). Moreover, for any x ∈ Ê , it holds that

(J |x∈Ê)
⊤∇h(x) = −α′(0)∇h(x),

the algebraic multiplicity of −α′(0) is 1, and all the other
eigenvalues of J |x∈Ê do not change when α(·) changes. □

The proof of Lemma 2 follows from a careful computation
and it is omitted due to space constraints. Note that J always
has an eigenvalue −α′(0); it follows that all the undesirable
equilibria are degenerate if α′(0) = 0, which complicates
the stability analysis. If α′(0) > 0, the Jacobian evaluated
at x ∈ Ê always has a negative eigenvalue. Lemmas 1 and
2 show that the extended K∞ function α(·) does not play a
role in the existence of undesirable equilibria. Additionally,
changing α(·) will only affect one eigenvalue of the Jacobian
evaluated at x ∈ Ê . The assumption that g(x)G(x)−1g(x)⊤

is constant is satisfied for several classes of systems, such as
mechanical systems, like the ones considered in [7, Section
III.B].

IV. LTI PLANAR SYSTEMS WITH SAFETY FILTERS

Since Problem 1 is difficult to solve in general, here
we provide a solution for it for planar LTI dynamics and
ellipsoidal obstacles. Consider the LTI planar system

ẋ = Ax+Bu, (6)

with x = [x1, x2]
⊤ ∈ R2, u ∈ Rm, with m ∈ {1, 2}, A ∈

R2×2, and with B ∈ R2×m full column rank. We make the
following assumption on (6).

Assumption 3 (Stabilizability): The system (6) is stabi-
lizable. Moreover, let u = −Kx, K ∈ R2×m, be any
stabilizing controller such that Ã = A − BK is Hurwitz.
□

In this setup, the system (2) is then customized as follows:

ẋ = F (x) := (A−BK)x+Bv(x), (7)

where the safety filter is given by

v(x) =

0, if η(x) ≥ 0,

−η(x)G(x)−1BT∇h(x)
∥BT∇h(x)∥2

G(x)−1
, if η(x) < 0.

(8)

In the following, we show that the undesired equilibria
and their stability properties of (7) with ellipsoidal obstacles
are equivalent to those of a system with circular obstacles.

Proposition 1: (Safety filters with ellipsoidal and circular
obstacles have the same dynamical properties): Let xc ∈ R2,
P ∈ R2×2 positive definite, h(x) = (x−xc)

TP (x−xc)−1,
C := {x ∈ Rn : h(x) ≥ 0}. Suppose that P = ETE, with
E ∈ R2×2 also positive definite, and define x̂c = Exc,
ĥ(x̂) = (x̂ − x̂c)

T (x̂ − x̂c) − 1 and Ĉ = {x ∈ Rn :
ĥ(x) ≥ 0}. Moreover, let Â = EAE−1, B̂ = EB, Ĝ(x̂) =
G(E−1x̂) and η̂(x̂) = ∇ĥ(x̂)T (Â− B̂KE−1)x̂+ α(ĥ(x̂)).
Consider the system

˙̂x = F̂ (x̂) := (Â− B̂KE−1)x̂+ B̂v̂(x̂), (9)

where

v̂(x̂) =

0, if η̂(x̂) ≥ 0,

− η̂(x̂)Ĝ(x̂)−1(x̂)B̂T∇ĥ(x̂)

∥B̂T∇ĥ(x̂)∥2
Ĝ(x̂)−1

, if η̂(x̂) < 0
(10)

Then,
i) Ĉ is forward invariant under system (9) and C is forward

invariant under system (7);
ii) system (9) is locally Lipschitz and system (7) is locally

Lipschitz;
iii) (A,B) is stabilizable if and only if (Â, B̂) is stabiliz-

able;
iv) p̂ ∈ R2 is an undesired equilibrium of (9) if and only

if p := E−1p̂ is an undesired equilibrium of (7);
v) the Jacobian of F̂ at p̂ and the Jacobian of F at p are

similar. □
Proof: To show i), note that system (9) satisfies

∇ĥ(x̂)T F̂ (x̂) + α(ĥ(x̂)) ≥ 0 and system (7) satisfies
∇h(x)TF (x) + α(h(x)) ≥ 0. These two conditions imply,
respectively, that Ĉ is forward invariant under system (9)
and C is forward invariant under system (7) [3, Theorem 2].
To show ii), recall that Assumption 2 implies the right-
hand-side of (7) is locally Lipschitz. Now let us show that
Assumption 2 also holds for ĥ and system (9), from which
the result follows. Indeed, suppose that (EB)⊤(x̂− x̂c) = 0.
Since for any x̂ ∈ Rn there exists x ∈ Rn such that x̂ = Ex
and Assumption 2 holds, we have 0 = (EB)⊤(x̂ − x̂c) =
B⊤E⊤E(x − xc) = BP (x − xc) = 0, which means



that (x̂ − x̂c)
⊤EAE−1x̂ = (x − xc)

⊤E⊤EAx = (x −
xc)

⊤P⊤Ax > 0. Hence Assumption 2 holds for ĥ and (9),
from which it follows that (9) is locally Lipschitz. Item iii)
follows from the observation that if A − BK is Hurwitz
then Â − B̂KE−1 = E(A − BK)E−1 is also Hurwitz.
For iv), it follows that p̂ satisfies the conditions in Lemma 1
for (9) if and only if p satisfies the conditions in Lemma 1
for (7). For v), we note that F (E−1x̂) = E−1F̂ (x̂) for
any x̂ ∈ R2. Since the safety filter is active at undesired
equilibria, η(p) < 0. Now, let J be the Jacobian of (7) at
p, and let Ĵ be the Jacobian of (9) at p̂. By the chain rule,
Ĵ = EJE−1, which implies that J and Ĵ are similar.

Given that Proposition 1 ensures that undesired equilibria
for general ellipsoidal obstacles have the same stability
properties as undesired equilibria for circular obstacles, in
the following we focus on studying the dynamical properties
of safety filters for LTI systems and circular obstacles.

Accordingly, we consider the circular unsafe set:

C = {x ∈ R2 : h(x) = ∥x− xc∥2 − r2 ≥ 0},

with xc ∈ R2 the center. We take the extended class K∞
function in Definition 1 to be linear and with slope α0 > 0,
so that α′(0) > 0. We denote the eigenvalues of Ã as λ1,
λ2 ∈ C2. Let V (x) = x⊤Qx be the associated Lyapunov
function, with a positive definite symmetric matrix Q, such
that x⊤QÃx < 0 for all x ̸= 02. Additionally, we pick
G(x) = B⊤B.

The first result rules out the existence of limit cycles.
Proposition 2: (Non-existence of limit cycles): Suppose

that Assumptions 1–3 hold for the closed-loop system (7).
Assume that for (7), Ê = {x̂∗}, with x̂∗ a saddle point.
Then, there exist α∗

1 > 0 such that for any α(s) = α0s with
α0 ≥ α∗

1, the closed-loop system does not have limit cycles
in C. □

Proof: First, let us show that the closed-loop system
does not have limit cycles not circling the origin. Let γ ⊂ C
be such limit cycle and let us reach a contradiction. Note
that since C is forward invariant, such limit cycle has to be
contained in C. Now, we consider two cases. First, assume
that γ is not circling the obstacle. Note that γ can not contain
an undesired equilibrium, since otherwise it would not be a
limit cycle. Since the undesired equilibria of the closed-loop
system are located at the boundary of the obstacle, γ does not
encircle any equilibrium point. However, this contradicts [16,
Corollary 6.26]. Next, consider the case where γ encircles
the obstacle. Once again, γ can not contain an undesired
equilibrium. Therefore, the undesired equilibrium of the
closed-loop system is encircled by γ. However, as shown
in [14, Theorem 6, Section 3.12], the index of a saddle point
is −1 and therefore by [14, Section 3.12, Theorem 2 and
Theorem 3], γ can not contain a saddle point. Therefore,
there does not exist a limit cycle not circling the origin.

Now, let γ ⊂ C be a limit cycle encircling the origin
and the obstacle. In this case, γ encircles two equilibria: the
origin (which is asymptotically stable, because the safety
filter is inactive in a neighborhood of it, and therefore
has index 1 [14, Thm. 6, Section 3.12]) and the undesired

equilibrium in the boundary of C, which is a saddle point and
therefore has index 1 [14, Thm. 6, Section 3.12]). However,
this contradicts [14, Section 3.12, Thm. 2 and Thm. 3].

Finally, consider the case where γ encircles the origin, but
not the obstacle. Recall that we have the Lyapunov function
V (x) = x⊤Qx with symmetric Q, such that x⊤QÃx < 0
for all x ̸= 02. Then there exists q ∈ ∂C = {x : h(x) = 0}
such that Qq = −ξ(q − xc), ξ > 0. It follows that η(q) =
∇h(q)Ãq = − 2

ξq
⊤QÃq > 0, since q ̸= 02 by Assumption

1. By continuity, there exists an open neighborhood N(q) of
q, such that η(x) > 0 for all x ∈ N(q). Next we show that
{x : V (x) ≤ V (q), h(x) = 0} = {q}. Define H1(x) =
V (x) + ξh(x), then H1(x) is strongly convex in R2 and
∇H1(q) = 0. It follows that q is the unique global minimizer
of H1 in R2, which implies that {x : V (x) ≤ V (q), h(x) =
0} = {q}. Then the set ΓV (q) \N(q) is a compact subset of
int(C), where ΓV (q) := {x : V (x) ≤ V (q)}. It follows that
∃ α∗

1 > 0, such that α∗
1 ≥ minx∈ΓV (q)\N(q)

−∇h(x)⊤Ãx
h(x) .

Hence if α(s) = α0s with α0 ≥ α∗
1, η(x) ≥ 0 for all

x ∈ ΓV (q). Thus for any solution x(t) with x(0) ∈ ΓV (q),
we have limt→+∞ x(t;x0) = 02. However, as γ encircles
the origin, but not the obstacle, and ΓV (q) ∩ ∂C ̸= ∅, it
follows that γ must intersect with ΓV (q). Let q0 ∈ γ∩ΓV (q),
then the solution x(t) with x(0) = q0 converge to the origin,
which contradicts with γ is a limit cycle.

By combining the results in this section, we have the
following.

Theorem 1 (Global behavior analysis): Suppose that the
Assumptions 1–3 hold for the closed-loop system (7). As-
sume that Ê = {x̂∗} and x̂∗ is a saddle point. Then, there
exists α∗

2 > 0 such that for any α(s) = α0s with α0 ≥ α∗
2,

if Ws(x̂
∗) denotes the global stable manifold of x̂∗ it holds

that:
1) if x0 ∈ Ws(x̂

∗), then lim
t→∞

x(t;x0) = x̂∗;
2) if x0 /∈ Ws(x̂

∗), then lim
t→∞

x(t;x0) = 02. □

Proof: Let α∗
1 be as described in Proposition 2. We first

note that there exists α∗
2 ≥ α∗

1 such that for all α0 ≥ α∗
2,

{x : η(x) ≤ 0} is compact, as η(x) = 2(x − xc)
⊤Ax +

α0(∥x − xc∥2 − r2) is radially unbounded for α0 large
enough. Next, recalling that V (x) = x⊤Px, then there
exists a sublevel set Γ0 of V with (Rn\C) ∪ {x : η(x) ≤
0, α(s) = α∗

2s} ⊂ Int(Γ0). It follows that for all α0 ≥ α∗
2,

(Rn\C) ∪ {x : η(x) ≤ 0, α(s) = α0s} ⊂ Int(Γ0). This
implies that by taking α0 ≥ α∗

2, Γ0 is forward-invariant.
Similarly, we have that any sublevel set of V Γ1 satisfying
Γ0 ⊆ Γ1, is forward-invariant. Hence no trajectory goes to
infinity and the solution x(t;x0) is defined for all t ≥ 0
and is therefore maximal. Now, by Proposition 2, for all
α0 ≥ α∗

2, we have α0 ≥ α∗
1 and hence all trajectories with

initial conditions in C are not limits cycles. Moreover, the
Stable Manifold Theorem [14, Ch. 2.7] and the definition
of global stable manifold [14, Ch. 2.7, Def. 3] ensure that
lim
t→∞

x(t;x0) = x̂∗ if and only if x0 ∈ Ws(x̂
∗). Therefore,

by taking α0 ≥ α∗
2, the Poincaré-Bendixson Theorem [17,

Chapter 7, Thm. 4.1] ensures that all trajectories with initial
condition outside of Ws(x̂

∗) converge to the origin.



Remark 1 (Almost global asymptotic stability): The Sta-
ble Manifold Theorem [14, Ch. 2.7] ensures that if x̂∗

is a saddle point in R2, the local stable manifold is 1-
dimensional. Therefore, it has measure of zero. Moreover, the
global stable manifold must also have measure of zero. If this
were not the case, solutions would have to intersect. However
this is not possible due to the uniqueness of solutions. Hence
{x0 ∈ Rn : lim

t→∞
x(t;x0) = 0n} = S. It follows that the set

of initial conditions whose associated trajectory converges to
x̂∗ has measure zero. □

A. Under-actuated LTI Planar Systems

In the under-actuated case, we write

A =

[
a11 a12
a21 a22

]
, B =

[
b1
b2

]
, x =

[
x1

x2

]
, (11)

Throughout this section, we denote xc = [xc,1, xc,2]
⊤ and

let β = a11b2−b1a21, γ = a22b1−b2a12, and T3 = −γxc,2+
βxc,1 and assume that k : R2 → R is a linear stabilizing
controller of the form k(x) = −Kx = −k1x1 − k1x2 for
some k1, k2 ∈ R. We note also that since in this case G is a
scalar, (7) is independent of G.

The following results give conditions on h and system (11)
that ensure that Assumptions 1 and 2 hold.

Lemma 3 (Conditions for Assumption 1): Assumption 1
holds if and only if ∥xc∥2 > r2. □

The proof of Lemma 3 follows from the observation that
∥xc∥2 > r2 guarantees that the origin is safe.

Proposition 3 (Conditions for Assumption 2): Let α0 >
0, T1 := b2β + b1γ + 1

2α0(b
2
2 + b21), and T2 := (βxc,1 −

γxc,2)
2+2α0r

2T1. Suppose that r > 0, b21+b22 > 0, T1 > 0,
and

r√
b22 + b21

>
|T3|+

√
T2

2T1
.

Then, Assumption 2 holds with the linear extended class K
function α(s) = α0s. □

Proof: We need to ensure that all x ∈ R2 such that
h(x) ≥ 0 and BT (x − xc) = 0, satisfy 2(x − xc)Ax +
α(h(x)) > 0. First suppose b1 ̸= 0. Equivalently, we need
to ensure that

(x2 − xc,2)
2
(
(a11 +

α0

2
)
b22
b21

− b2
b1
(a12 + a21) + a22 +

α0

2

)
+(x2 − xc,2)

(
a22xc,2 −

b2
b1
a11xc,1−

b2
b1
a12xc,2+a21xc,1

)
− 1

2
α0r

2>0 (12)

whenever (x2 − xc,2)
2 ≥ r2/((b22/b

2
1) + 1). This follows by

assumption. The condition T1 > 0 ensures that the coefficient
of x2 − xc,2 of (12) is positive, and the condition T2 > 0
ensures that the discriminant of (12) is positive. Now, by
calculating the roots of the quadratic equation in x2−xc,2 we
observe that the rest of the conditions in the statement ensure
that (12) holds whenever (x2 − xc,2)

2 ≥ r2/((b22/b
2
1) + 1).

The case b1 = 0 follows by a similar argument.
We next give a result that will be used later in the paper.

Lemma 4 (Conditions for β and γ): Let Assumption 3
hold, then γ2 + β2 > 0. Furthermore, suppose that the
conditions in Proposition 3 hold. Then, r2(γ2+β2)−T 2

3 > 0.
Moreover, if the Assumption 1 holds, then γxc,1+βxc,2 ̸= 0.

Proof: First, note that if γ2 + β2 = 0, γ = β = 0.
This implies that the determinant of the controllability matrix
associated with (11) is zero, which contradicts Assumption 3.
Now let us show that r2(γ2 + β2)− T 2

3 > 0. By noting that
|T3| +

√
T2 > 0, and squaring both sides of the last two

conditions in Proposition 3, we get:

|T3| <
(b2β + b1γ)r√

b21 + b22
. (13)

Note that (13) requires b2β + b1γ > 0 since otherwise the
conditions in (13) would not be feasible for any T3. Now,
by using condition (13) and applying the Cauchy-Schwartz
inequality, we get T3 > −

√
b21 + b22r, T3 <

√
b21 + b22r,

from which it follows that r2(γ2 + β2) − T 2
3 > 0. Finally

suppose that ∥xc∥2 > r2 and γxc,1 + βxc,2 = 0. Note that
T 2
3 = (−γxc,2 + βxc,1)

2 = (−γxc,2 + βxc,1)
2 + (γxc,1 +

βxc,2)
2 = (γ2 + β2)∥xc∥2. Since ∥xc∥2 > r2, this implies

that r2(γ2 + β2)− T 2
3 < 0, which is a contradiction.

The following result characterizes the undesired equilibria
of the closed-loop system (7) with (11).

Proposition 4: (Equilibria in Under-actuated Systems):
Suppose that Assumptions 1, 3 and the conditions in Propo-
sition 3 hold. Define p+ := (γz+, βz+), and p− :=
(γz−, βz−), where

z+ =
γxc,1 + βxc,2 +

√
r2(γ2 + β2)− T 2

3

γ2 + β2
,

z− =
γxc,1 + βxc,2 −

√
r2(γ2 + β2)− T 2

3

γ2 + β2
.

Then,

i) if γxc,1 + βxc,2 < 0, p+ is the only undesired equilib-
rium of the closed-loop system (7) with (11);

ii) if γxc,1 + βxc,2 > 0, p− is the only undesired equilib-
rium of the closed-loop system (7) with (11).
Proof: By Lemma 4, the expressions for p+ and

p− are well-defined (note that if γ2 + β2 = 0 the result
in Assumption 3 would not hold). Moreover, it follows
from Lemma 1 that p+ and p− are the only two potential
undesired equilibria for system (7) with (11). In order to
ensure that p+ is an undesired equilibrium of the closed-
loop system, the condition (x−xc)

T (A−BK)x|x=p+ < 0
should hold. By using the expression of p+, the condition
is equivalent to

z+T4

(
b1(γz+ − xc,1) + b2(βz+ − xc,2)

)
< 0, (14)

where T4 = a11a22 − a12a21 − k1γ − k2β. Since A − BK
is Hurwitz, a11a22 − a12a21 − γk1 − βk2 > 0. This implies
that T4 > 0 and therefore (14) is equivalent to

z+(b1(γz+ − xc,1) + b2(βz+ − xc,2)) < 0. (15)



Now, let us show that b1(γz+ −xc,1)+ b2(βz+ −xc,2) > 0.
Indeed, this is equivalent to

T3(γb2 − βb1) + (γb1 + βb2)
√
r2(γ2 + β2)− T 2

3 > 0,

and since γb1 + βb2 > 0 as argued in the proof of
Lemma 4, this could only not hold if T3(γb2 − βb1) < 0
and (γb1 + βb2)

2(r2(γ2 + β2) − T 2
3 ) ≤ T 2

3 (γb2 − βb1)
2.

However, this last condition enters in contradiction with (13).
Therefore, (15) holds if and only if z+ < 0, which is
equivalent to: γxc,1 + βxc,2 < 0 and

|γxc,1 + βxc,2| >
√

r2(γ2 + β2)− T 2
3 . (16)

Note that since r2(γ2+β2)−T 2
3 = (xc,1γ+xc,2β)

2−(γ2+
β2)(x2

c,1 + x2
c,2 − r2) < (xc,1γ + xc,2β)

2 (where in the last
inequality we have used the fact that x2

c,1 + x2
c,2 > r2), it

follows that the last of the inequalities in (16) always holds.
Therefore, p+ is an undesired equilibrium of the closed-loop
system if and only if γxc,1 + βxc,2 < 0. Also by following
an analogous argument, we can show that p− is an undesired
equilibrium if and only if γxc,1 + βxc,2 > 0.

Note that by Lemma 4, γxc,1 + βxc,2 ̸= 0. Therefore
Proposition 4 shows that for linear, planar, underactuated
and stabilizable linear systems, (2) has exactly one undesired
equilibrium. Note also that the result in Proposition 4 is
independent of the linear stabilizing controller k and the
extended class K function α chosen.

The following result establishes that the undesired equi-
librium of the closed-loop system is always a saddle point.

Proposition 5: (Undesired Equilibria are Saddle Points):
Suppose that Assumptions 1, 3 and the conditions in Propo-
sition 3 hold. Then there always exists one and only one
undesirable equilibrium, which must be a saddle point.

Proof: To analyze the stability of p+, we compute the
Jacobian of (2) at p+, which is given by:

J+ = A− B

(p+ − xc)⊤B
((p+ − xc)

⊤(A+ α0In)),

where we have used the fact that p+ satisfies the conditions
in Lemma 1. To study the eigenvalues of J+, we examine its
determinant. After some calculations, we get that Det(J+) =
−α0T

+, where

T+ :=

√
r2(γ2 + β2)− T 2

3 (β
2 + γ2)

T3(b2γ − b1β) + (b1γ + b2β)
√

r2(γ2 + β2)− T 2
3

,

By Lemma 4, T+ ̸= 0. Moreover, as shown in
the proof of Proposition 4, T3(b2γ − b1β) + (b1γ +
b2β)

√
r2(γ2 + β2)− T 2

3 > 0. Since α0 > 0, this implies
that Det(J+) < 0, which implies that J+ has two real
eigenvalues with opposite sign and hence if p+ is an
undesired equilibrium, it is a saddle point. An analogous
argument shows that if p− is an undesired equilibrium, it is
a saddle point.

Note that the results in Propositions 4 and 5 are in-
dependent of the choice of weighting matrix G, nominal
controller k or extended class K function α. The combination
of Propositions 4 and 5 with Theorem 1 provide a complete

picture of the under-actuated case, which we summarize as
follows.

Corollary 1: (Characterization of trajectories for lin-
ear planar underactuated systems): Suppose that Assump-
tions 1, 3 and the conditions in Proposition 3 hold. Then,
the closed-loop system (7) obtained from (11) has one and
only one undesired equilibrium x̂∗ equal to either p+ or
p−. Additionally, there exists α∗

2 > 0 such that for any
α(s) = α0s with α0 ≥ α∗

2, if Ws(x̂
∗) denotes the global

stable manifold of x̂∗ it holds that:
1) if x0 ∈ Ws(x̂

∗), then lim
t→∞

x(t;x0) = x̂∗;
2) if x0 /∈ Ws(x̂

∗), then lim
t→∞

x(t;x0) = 02. □

B. Fully Actuated LTI Planar Systems

We now consider the case where B is invertible; in this
case, Assumptions 2 and 3 are satisfied. The proofs for
the results presented in this section are postponed to the
appendix.

1) xc is an eigenvector of Ã: We start by considering two
conditions for the case where xc is an eigenvector of Ã.

Condition 1. λ1 < λ2 < 0, Ãxc = λ2xc, Ãv1 = λ1v1,
v2 = xc

∥xc∥ , 1− (λ1−λ2)
2r2

λ2
2∥xc∥2 = 0, (v⊤

1 v2)
2 = 1− (λ1−λ2)

2r2

λ2
2∥xc∥2 .

Condition 2. λ1 < λ2 < 0, Ãxc = λ2xc, Ãv1 = λ1v1,
v2 = xc

∥xc∥ , 1− (λ1−λ2)
2r2

λ2
2∥xc∥2 = 0, (v⊤

1 v2)
2 > 1− (λ1−λ2)

2r2

λ2
2∥xc∥2 .

We have that there exists only one undesirable equilibrium
and it is a degenerate equilibrium if and only if Condition
1 is true. If Condition 2 is true, there are two undesirable
equilibria, one of which is a saddle point and the other one
is a degenerate equilibrium.

If neither Condition 1 nor Condition 2 is true, we summa-
rize the results about undesirable equilibria for the case that
xc is an eigenvector of Ã in Tables I and II. We gather all
the cases in the following result.

Proposition 6: (Characterization of undesired equilibria):
Let Assumptions 1 be satisfied and B be invertible. Given
that Ã is stable and xc is an eigenvector of Ã, then one of
the following is true:
(i) |E| = 2, |Ê | = 1, x ∈ Ê is a degenerate equilibrium.

(ii) |E| = 2, |Ê | = 1, x ∈ Ê is a saddle point.
(iii) |E| = 3, |Ê | = 2, one point in Ê is a saddle point and

the other point in Ê is a degenerate equilibrium.
(iv) |E| = 4, |Ê | = 3, two points in Ê are saddle points and

the other point in Ê is asymptotically stable. □

Proposition 6 asserts that the number and the stability
property of the undesirable equilibria are determined by the
number of solutions of (5), if xc is an eigenvector of Ã.

Proposition 7: (Spectrum of Ã does not determine sta-
bility properties of undesired equilibria): Let Assumptions
1 be satisfied and B be invertible. Then for any given
negative λ1 and λ2, there exists K1 and K2 in the set
{K : λ1, λ2 = spec(A − BK)}, such that there is an
undesirable asymptotically stable equilibrium after applying
the CBF filter with u = −K1x; and there is only one
undesirable equilibrium and it is a saddle point after applying
the CBF filter with u = −K2x. □



SP DE ASE

(v⊤
1 v2)2 < 1− r2

λ2∥x2
c∥

1 0 0

(v⊤
1 v2)2 = 1− r2

λ2∥x2
c∥

1 1 0

(v⊤
1 v2)2 > 1− r2

λ2∥x2
c∥

2 0 1

TABLE I
Ã STABLE, Ãv2 = λv2 + v1 , v1 = xc

∥xc∥
, Ãxc = λxc , ∥v2∥ = 1. SP:

SADDLE POINT, DE: DEGENERATE EQUILIBRIUM, ASE: UNDESIRABLE

ASYMPTOTICALLY STABLE EQUILIBRIUM.

SP DE ASE

(v⊤
i vj)

2 < 1− (λi−λj)
2r2

λ2
i ∥xc∥2

1 0 0

(v⊤
i vj)

2 = 1− (λi−λj)
2r2

λ2
i ∥xc∥2

1 1 0

(v⊤
i vj)

2 > 1− (λi−λj)
2r2

λ2
i ∥xc∥2

2 0 1

TABLE II
Ã STABLE, Ãxc = λixc , vi =

xc
∥xc∥

, Ãvj = λjvj , ∥vj∥ = 1,
i, j = {1, 2}, {vi,vj} LINEARLY INDEPENDENT.

Note that one can characterize the global stability property
of the origin based on the eigenvalues of A−BK. However,
based on Proposition 7, the eigenvalues of A− BK do not
fully determine the global stability property of the origin. On
the other hand, Proposition 7 shows that there always exists
a nominal controller u = −Kx such that Ã has negative
eigenvalues and the set of trajectories of (7) that do not
converge to the origin has measure zero (cf. Theorem 1).
Note that as shown in Lemma 2 and Tables I, II, the class K
function only affects the rate of decay in the stable manifold
of the undesirable equilibria and it does not affect the
existence and stability of undesirable equilibria. Therefore,
the choice of nominal controller u = −Kx determines
in which of the cases we fall into. Ideally, the controller
should be designed to that there exists only one undesirable
equilibrium and it is a saddle point.

2) xc is not an eigenvector of Ã: Next, we analyze
the number of undesirable equilibria when xc is not an
eigenvector of Ã. In this case, the analysis is more involved
and we only study the stability properties of undesired
equilibria under some sufficient conditions.

Proposition 8 (Number of undesired equilibria): Let As-
sumptions 1 be satisfied and B be invertible. Given that
G(x) = B⊤B and Ã is stable and xc is not an eigenvector
of Ã, then 1 ≤ |Ê| ≤ 3 and |E \ Ê| ≥ 1. In addition, if
λ1 ≤ λ2, there exists x ∈ Ê with indicator δ < λ1

2 . □

Combining Propositions 1, 4, 8 and Table I, II, it follows
that applying the CBF filter to a LTI planar system (either
under or fully actuated) with a linear stabilizing controller
always introduces at least one undesirable equilibrium when
the obstacle is ellipsoidal. By [18, Thm. 9.5] and Lemma 2,
there exists at least one trajectory converging to the undesir-
able equilibrium. This result is consistent with [19], which
states that given a local Lipschitz dynamical system and a
compact unsafe set, if the safe set is forward invariant then
there exists at least one trajectory that does not converge
to the origin. Theorem 1 ensures that if there is only one
undesirable equilibrium and it is a saddle point, then there

is only one such trajectory and it corresponds to the global
stable manifold of the undesired equilibrium.

To analyze the stability of undesirable equilibria in the
case that xc is not an eigenvector of Ã, we need to determine
the eigenvalue of J |x∈Ê . By Lemma 2, we know that
−α′(0) = −α0 is always an eigenvalue of J |x∈Ê . In
addition, for any linearly independent vectors v1, v2 ∈ C2,
we can compute J |x∈Ê v1 = d11v1 + d21v2 and J |x∈Ê
v2 = d12v1 + d22v2. Then the trace of J |x∈Ê is equal to
d11 + d22 and the other eigenvalue of J |x∈Ê is equal to
d11+d22+α′(0). By choosing some specific v1 and v2, we
obtain the following result.

Lemma 5: (The other eigenvalue of the Jacobian): As-
sume that λ1 ̸= λ2, then there exists v1, v2 ∈ C2 such
that ∥v1∥2 = ∥v2∥2 = 1, Ãv1 = λ1v1 and Ãv2 = λ2v2.
For any x ∈ Ê , if the associated indicator δx /∈ {λ1

2 , λ2

2 },
xc = β1v1 + β2v2 and x = β3v1 + β4v2, then it holds that
β3 − β1 = −λ1β1

λ1−2δx
, β4 − β2 = −λ2β2

λ2−2δx
and the eigenvalue

other than −α′(0) of J |x is λ1+λ2−2δx− (β3−β1)λ1

r2 ∆1−
(β4−β2)λ2

r2 ∆2, where ∆1 := (β3 − β1)
∗ + (β4 − β2)

∗v∗
2v1,

∆2 := (β3 − β1)
∗v∗

1v2 + (β4 − β2)
∗. □

Using Lemma 5, we get the following result.
Proposition 9: (Sufficient conditions for undesired equi-

libria): Let Assumptions 1 be satisfied and B be invertible.
Given that G(x) = B⊤B, Ã is stable with two real eigen-
values λ1 < λ2 and xc is not an eigenvector of Ã, then there
is no undesirable equilibrium with indicator δ ∈ {λ1

2 , λ2

2 } .
Besides, let v1 and v2 be the eigenvectors associated with λ1

and λ2, respectively, and v⊤
1 v2 ≥ 0, ∥v1∥ = ∥v2∥ = 1; and

then we can write xc = β1v1 + β2v2. Then, the following
holds.

i) If β2
1 + β1β2v

⊤
1 v2 ≥ 0, then for any undesirable

equilibrium x with indicator δ such that δ < λ1

2 , x
is a saddle point.

ii) If β1β2v
⊤
2 v1 + β2

2 ≥ 0, then for any undesirable
equilibrium x with indicator δ such that λ2

2 < δ < 0, x
is asymptotically stable.

iii) Define F1 : R → R as:

F1(δ) := −|λ1 − 2δ|2|λ2 − 2δ|2r2

+ |λ1β1|2|λ2 − 2δ|2 + |λ2β2|2|λ1 − 2δ|2

+ λ∗
1β

∗
1λ2β2(λ2 − 2δ)∗(λ1 − 2δ)v∗

1v2

+ λ1β1λ
∗
2β

∗
2(λ2 − 2δ)(λ1 − 2δ)∗v∗

2v1.

(17)

If the third order polynomial dF1(δ)
dδ has only one real

root1 and β2
1 + β1β2v

⊤
1 v2 ≥ 0, then there exists only

one undesirable equilibrium and it is a saddle point. □
If |β1| ≫ |β2| and |v⊤

1 v2| is small, then the case β2
1 +

β1β2v
⊤
1 v2 ≥ 0 is a generalized version of the case in the

first row of Table II. If |β2| ≫ |β1| (i.e., xc is “essentially”
eigenvector associated with λ2) and λ1 ≪ λ2, then the case
β1β2v

⊤
2 v1 + β2

2 ≥ 0 is a generalized version of the case in
the last row of Table II, as 1− (λ2−λ1)

2r2

λ2
2∥xc∥2 < 0 with λ1 ≪ λ2.

1For third-order polynomial ax3 + bx2 + cx + d, its discriminant is
defined as 18abcd − 4b3d + b2c2 − 4ac3 − 27a2d2. If a ̸= 0 and the
discriminant is negative, the third-order polynomial only has one real root.



Fig. 1. Examples of trajectories of an LTI planar system with a safety filter for a circular obstacle; the figures show the vector fields, the undesired
equilibria, and the desired equilibrium (which is the origin). (a): Under-actuated system. (b)-(c)-(d): Fully actuated system, corresponding to the three rows
of Table II respectively. In (a) and (b) the undesirable equilibrium is a saddle point. In (c) there is one degenerate equilibrium and one saddle point. In (d)
there are three undesirable equilibria, one is asymptotically stable while the others are saddle points.

V. NUMERICAL EXPERIMENTS

As a first experiment, we consider the safety set C =
{x : ∥x − (3, 2)⊤∥2 − 1 ≥ 0} and the under-actuated

system ẋ =

[
4 2
1 1

]
x +

[
3
1

]
u with nominal controller

u = −
[
3 −2

]
x. Once the CBF-based filter is applied,

there is one undesirable equilibrium (2, 2)⊤, as guaranteed
by Proposition 4. Examples of trajectories of the system
with the safety filter are shown in Figure 1(a), along with
the vector field, the spurious undesired equilibrium, and the
desired equilibrium (which is the origin).

In Figures 1(b), (c) and (d), we consider a safety set C =
{x : ∥x− (2, 0)⊤∥2 − 1 ≥ 0}, and the integrator dynamics
ẋ = u as an example of (6).

In Figure 1(b), we show the results for the integrator

dynamics with K =

[
−5 0
0 −1

]
, G(x) = B⊤B, and the

safety filter with α(s) = α0s, α0 = 10. There is one
undesirable equilibrium (3, 0)⊤. We note that for both the
setups in Figures 1 (a) and (b), there is only one undesirable
equilibrium and it is a saddle point. Only one trajectory
converges to the undesirable equilibrium and all other tra-
jectories converge to the origin.

In Figure 1(c), we show the results for (7) with K =[
−3 4

√
2

0 −1

]
, G(x) = B⊤B and α(s) = α0s, α0 =

10. There two undesirable equilibria, which are ( 53 ,
2
√
2

3 )⊤

(degenerate equilibrium) and (3, 0)⊤ (saddle point). Only one
trajectory converges to (3, 0)⊤. The measure of the stable set
of the degenerate equilibrium is positive (in fact, the measure
is +∞), although the degenerate equilibrium is unstable.

In Figure 1(d), we show that results for (7) with K =[
−1 0
0 −5

]
, G(x) = B⊤B and α(s) = α0s, α0 = 10.

There are three undesirable equilibria: ( 52 ,
√
3
2 )⊤, ( 52 ,−

√
3
2 )⊤

and (3, 0)⊤; the last one is asymptotically stable and the
first two are saddle points. The two trajectories converging
to ( 52 ,

√
3
2 )⊤, ( 52 ,−

√
3
2 )⊤ and part of the obstacle constitute

the boundary of the region of attraction of (3, 0)⊤. Since
the examples in Figure 1(b), (c) and (d) all satisfy that
xc is an eigenvector of Ã, these results are consistent with
Proposition 6 (ii), (iii), (iv), respectively.
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APPENDIX

Denote the eigenvalues of A−BK as λ1, λ2 ∈ C. We note
that the (5), which is used to check for potential undesirable
equilibria), can be rewritten as follows:

(Ã− 2δI2×2)(x− xc) = −Ãxc and, (18)

∥x− xc∥2 − r2 = 0 . □

A. Proof of the results of the case where xc is an eigenvector
of Ã

Denote λ the eigenvalue associated with xc. Then λ = λi,
i = 1 or 2; and both λ1 and λ2 are real. We first determine
the solution for (18) with δ /∈ {λ1

2 , λ2

2 } .
Since δ /∈ {λ1

2 , λ2

2 }, by the first equation in (18), it fol-
lows that x = 2δ

2δ−λxc. Plugging this in the second equation,
we can solve δ. The solutions for (18) are (x∗,−,

λ
2 +

λ∥xc∥
2r )

and (x∗,+,
λ
2 − λ∥xc∥

2r ), where x∗,− := (1 + r
∥xc∥ )xc) and

x∗,+ := (1− r
∥xc∥ )xc).

Notice that x∗,− comes with a negative δ and x∗,+ comes
with a positive δ, so x∗,− is an undesirable equilibrium while
x∗,+ is not an undesirable equilibrium. By Lemma 2, the
Jacobian at x∗,− is

J |x∗,−= Ã− 2δI− xcx
⊤
c

∥xc∥2
(Ã− (2δ − α′(0))I).

where δ = λ1

2 + λ1∥xc∥
2r .

In the following, we will determine if there exists solutions
for (18) with δ ∈ {λ1

2 , λ2

2 } and discuss the stability of
undesirable equilibrium case by case.

Case 1 Ã is not diagonalizable
In this case, we must have λ1 = λ2. Let v1 = xc

∥xc∥ , v2 be
a vector such that ∥v2∥ = 1, Ãv2 = λ1v2 +v1. If we write
xc = β1v1 + β2v2, then β1 = ∥xc∥ and β2 = 0. Using the
same technique in the proof of Lemma 5, it follows that the
Jacobian at x∗,− has an eigenvalue equal to λ2 − 2δx∗,− =

λ1 − λ1 − λ1∥xc∥
r > 0, implying that x∗,− is a saddle point.

Next, we determine if there exists a solution with δ = λ1

2 .
We write x = β3v1+β4v2. Hence the first equation of (18)
with δ = λ1

2 can be rewritten as

β4 = −λ1∥xc∥. (19)

Plugging the value of β4 into the second equation of (18),
it follows that

∥(β3 − ∥xc∥)v1 − λ1∥xc∥v2∥2 − r2 = 0.

Define β̂3 := β3 − ∥xc∥ and τ1 := λ1∥xc∥, then

β̂2
3 − 2τ1v

⊤
1 v2β̂3 + τ21 − r2 = 0. (20)

Note that the discriminant of quadratic equation (20) is

∆ :=4
(
τ21 (v

⊤
1 v2)

2 − τ21 + r2
)
= 4

(
τ21 ((v

⊤
1 v2)

2 − 1) + r2
)

Case 1.1 if (v⊤
1 v2)

2 < 1 − r2/τ21 = 1 − r2

λ2
1∥x2

c∥
, there

doesn’t exist a solution associated with δ = λ1

2 .
Hence in Case 1.1, there is only one undesirable equilib-

rium, which is a saddle point.

Case 1.2 if (v⊤
1 v2)

2 = 1 − r2/τ21 = 1 − r2

λ2
1∥xc∥2 , then

there exists one solution with δx̂ = λ1

2 , which is

(x̂, δx̂) =

(
(τ1v

⊤
1 v2 + ∥xc∥)v1 − τ1v2,

λ1

2

)
.

We note that (x̂ − xc)
⊤v1 = 0 and (Ã − 2δx̂I)v1 = 0.

Hence J |x̂ v1 = 0.
Thus in Case 1.2, there is another one undesirable equi-

librium, at which the Jacobian has a negative eigenvalue and
a zero eigenvalue.

Case 1.3 if (v⊤
1 v2)

2 > 1 − r2/τ21 = 1 −
r2

λ2
1∥xc∥2 , there exists two solutions β̂3 = β̂

(1)
3 and

β̂3 = β̂
(2)
3 for (20). Then there exists two ex-

tra solutions for (18):
(
(β̂

(1)
3 + ∥xc∥)v1 − τ1v2,

λ1

2

)
and(

(β̂
(2)
3 + ∥xc∥)v1 − τ1v2,

λ1

2

)
and both of them are unde-

sirable equilibrium.
Notice that in this sub-case, β̂(1)

3 + β̂
(2)
3 = 2τ1v

⊤
1 v2, we

can assume that β̂(1)
3 < τ1v

⊤
1 v2 and β̂

(1)
3 > τ1v

⊤
1 v2.

Using the same technique in the proof of Lemma 5, we
can show that J |x, with x =

(
(β̂

(1)
3 + ∥xc∥)v1 − τ1v2

)
,

has a eigenvalue τ1
r2 (β̂

(1)
3 − τ1v

⊤
1 v2) > 0; and J |x,

with x =
(
(β̂

(2)
3 + ∥xc∥)v1 − τ1v2

)
, has an eigenvalue

τ1
r2 (β̂

(2)
3 − τ1v

⊤
1 v2) < 0.

Hence in Case 1.3, there are another two undesirable
equilibria, one of which is stable and the other one is saddle
point.

Case 2 λ1 ≤ λ2 < 0, Ãxc = λ1xc

Let v1 = xc

∥xc∥ , v2 be an eigenvector associated with λ2

and ∥v2∥ = 1, v⊤
1 v2 ≥ 0. If we write xc = β1v1 + β2v2,

then β1 = ∥xc∥ and β2 = 0. By Lemma 5, it follows that the
Jacobian at x∗,− has an eigenvalue equal to λ2 − 2δx∗,− =

λ2 − λ1 − λ1∥xc∥
r > 0, implying that x∗,− is a saddle point.

Next, we determine if there exists a solution with δ ∈
{λ1

2 , λ2

2 }. We write x = β3v1 + β4v2 and then the first
equation of (18) can be rewritten as

(λ1 − 2δ)(β3 − ∥xc∥) = −λ1∥xc∥
(λ2 − 2δ)β4 = 0

(21)

which follows that δ ̸= λ1

2 .
If δ = λ2

2 , it follows that β3 = −λ2∥xc∥
λ1−λ2

. Plugging the
value of β3 into the second equation of (18), it follows that

∥−τ2v1 + β4v2∥2 − r2 = 0.

where τ2 := λ1∥xc∥
λ1−λ2

. Then

β2
4 − 2τ2v

⊤
1 v2β4 + τ22 − r2 = 0 (22)

Note that the discriminant of quadratic equation (22) is

∆ :=4
(
τ22 (v

⊤
1 v2)

2 − τ22 + r2
)
= 4

(
τ22 ((v

⊤
1 v2)

2 − 1) + r2
)

Case 2.1 if (v⊤
1 v2)

2 < 1− r2/τ22 = 1− (λ1−λ2)
2r2

λ2
1∥xc∥2 , there

doesn’t exist a solution associated with δ = λ2

2 .
Hence in Case 2.1, there is only one undesirable equilib-

rium, which is a saddle point.



Case 2.2 if (v⊤
1 v2)

2 = 1− r2/τ22 = 1− (λ1−λ2)
2r2

λ2
1∥xc∥2 , then

there exists one solution with δx̂ = λ2

2 , which is

(x̂, δx̂) =

(
−λ2∥xc∥
λ1 − λ2

v1 +
λ1∥xc∥
λ1 − λ2

v⊤
1 v2v2,

λ2

2

)
.

We note that (x̂−xc)
⊤v2 = 0 and (Ã−2δx̂I)v2 = 0. Hence

J |x̂ v2 = 0.
Thus in Case 2.2, there is another one undesirable equi-

librium, at which the Jacobian has a negative eigenvalue and
a zero eigenvalue.

Case 2.3 if (v⊤
1 v2)

2 > 1 − r2/τ22 = 1 − (λ1−λ2)
2r2

λ2
1∥xc∥2 ,

there exists two solutions β4 = β
(1)
4 and β4 = β

(2)
4

for (21). Then there exists two extra solutions for (18):(
−λ2∥xc∥
λ1−λ2

v1 + β
(1)
4 v2,

λ2

2

)
and

(
−λ2∥xc∥
λ1−λ2

v1 + β
(2)
4 v2,

λ2

2

)
and both of them are undesirable equilibrium. Notice that in
this sub-case, β(1)

4 + β
(2)
4 = 2τ2v

⊤
1 v2 > 0 and β

(1)
4 β

(2)
4 =

τ22 − r2 > 0, we can assume that 0 < β
(1)
4 < τ2v

⊤
1 v2 and

β
(2)
4 > τ2v

⊤
1 v2. It follows that −τ2v

⊤
1 v2β

(1)
4 + τ22 − r2 =

−β
(1)
4 β

(1)
4 +τ2v

⊤
1 v2β

(1)
4 > 0 and −τ2v

⊤
1 v2β

(2)
4 +τ22 −r2 =

−β
(2)
4 β

(2)
4 + τ2v

⊤
1 v2β

(2)
4 < 0.

Using the same technique in the proof of Lemma 5, we
can show that J |x, with x =

(
−λ2∥xc∥
λ1−λ2

v1 + β
(1)
4 v2

)
,

has a eigenvalue λ2−λ1

r2 (τ22 − τ22v
⊤
1 v2β

(1)
4 − r2) > 0.; and

J |x, with x =
(

−λ2∥xc∥
λ1−λ2

v1 + β
(2)
4 v2

)
, has a eigenvalue

λ2−λ1

r2 (τ22 − τ22v
⊤
1 v2β

(2)
4 − r2) < 0.

Hence in Case 2.3, there are another two undesirable
equilibria, one of which is stable and the other one is saddle
point.

Case 3 λ1 < λ2 < 0, x0 is an eigenvector of A − BK
associated with λ2

Let v2 = xc

∥xc∥ , v1 be an eigenvector associated with λ1

and ∥v1∥ = 1, v⊤
1 v2 ≥ 0. If we write x0 = β1v1 + β2v2,

then β2 = ∥xc∥ and β1 = 0. By Lemma 5, it follows that the
Jacobian at x∗,− has an eigenvalue equal to λ1 − 2δx∗,− =

λ1 − λ2 − λ2∥xc∥
r .

We will determine the sign of λ1 − λ2 − λ2∥xc∥
r later.

Next, we determine if there exists a solution with δ ∈
{λ1

2 , λ2

2 }. We write xc = ∥xc∥v2, x = β3v1 + β4v2 and
then the first equation of (18) can be rewritten as

(λ1 − 2δ)β3 = 0

(λ2 − 2δ)(β4 − ∥xc∥) = −λ2∥xc∥,
(23)

which follows that δ ̸= λ2

2 .
When δ = λ1

2 , it follows that β4 = −λ1∥xc∥
λ2−λ1

. Plugging the
value of β4 into the second equation of (18), it follows that
∥β3v1 − τ3v2∥2 − r2 = 0, where τ3 := λ2∥xc∥

λ2−λ1
. Then

β2
3 − 2τ3v

⊤
1 v2β3 + τ23 − r2 = 0. (24)

Note that the discriminant of quadratic equation (24) is

∆ :=4
(
τ23 (v

⊤
1 v2)

2 − τ23 + r2
)
= 4

(
τ23 ((v

⊤
1 v2)

2 − 1) + r2
)

Case 3.1 if (v⊤
1 v2)

2 < 1− r2/τ23 = 1− (λ1−λ2)
2r2

λ2
2∥xc∥2 , there

doesn’t exist a solution associated with δ = λ1

2 .

In addition, we recall that the eigenvalue (other than
−α′(0)) of Jacobian at x∗,− is λ1−λ2− λ2∥xc∥

r . In this case,
we have 1− (λ1−λ2)

2r2

λ2
2∥xc∥2 > (v⊤

1 v2)
2 ≥ 0, which implies that

λ1−λ2− λ2∥xc∥
r > 0. Hence in Case 3.1, we only have one

undesirable equilibrium, which is a saddle point.
Case 3.2 if (v⊤

1 v2)
2 = 1− r2/τ23 = 1− (λ1−λ2)

2r2

λ2
2∥xc∥2

there exists one solution associated with δ = λ1

2 , which is

x̂ =

(
λ2∥xc∥
λ2 − λ1

v⊤
1 v2v1 −

λ1∥xc∥
λ2 − λ1

v2,
λ1

2

)
.

We note that (x̂−xc)
⊤v1 = 0 and (Ã−2δx̂I)v2 = 0. Hence

J |x̂ v1 = 0, i.e. x̂ is an undersirable equilibrium at which
the Jacobian has a negative eigenvalue and a zero eigenvalue.

In addition, we recall that the eigenvalue (other than
−α′(0)) of Jacobian at x∗,− is λ1 − λ2 − λ2∥xc∥

r .
In this case, we still have 1− (λ1−λ2)

2r2

λ2
2∥xc∥2 = (v⊤

1 v2)
2 > 0,

which implies that λ1−λ2− λ2∥xc∥
r > 0. Hence in this case,

x∗,− is an saddle point.
Thus in Case 3.2, besides x∗,−, there is another one

undesirable equilibrium, at which the Jacobian has a negative
eigenvalue and a zero eigenvalue.

Case 3.3 if (v⊤
1 v2)

2 = 1 − r2/τ23 = 1 − (λ1−λ2)
2r2

λ2
2∥xc∥2 ,

v⊤
1 v2 = 0, there exists one solution associated with δ = λ1

2 ,
which is

x̂ =

(
− λ1∥xc∥
λ2 − λ1

v2,
λ1

2

)
.

Notice that 1− (λ1−λ2)
2r2

λ2
2∥xc∥2 = 0 implies that −λ2

λ2−λ1
= r

∥xc∥ ,
which follows that

− λ1∥xc∥
λ2 − λ1

v2 = (1− λ2

λ2 − λ1
)xc = (1 +

r

∥xc∥
)xc = x∗,−,

and λ1 − λ2 − λ2∥xc∥
r = 0.

Thus in Case 3.3, there is only one undesirable equilib-
rium, at which the Jacobian has a zero eigenvalue.

Case 3.4 if (v⊤
1 v2)

2 > 1 − r2/τ23 = 1 −
(λ1−λ2)

2r2

λ2
2∥xc∥2 , there exists two solutions β3 = β

(1)
3

and β3 = β
(2)
3 for (23). Then there exists two

extra solutions for (18):
(
β
(1)
3 v1 − λ1∥xc∥

λ2−λ1
v2,

λ1

2

)
and(

β
(2)
3 v1 − λ1∥xc∥

λ2−λ1
v2,

λ1

2

)
and both of them are undesirable

equilibrium. Notice that in this sub-case, we have β
(1)
3 +

β
(2)
3 = 2τ3v

⊤
1 v2 < 0. Then we can assume that β

(1)
3 <

τ3v
⊤
1 v2 and β

(2)
3 > τ2v

⊤
1 v2.

Using the same technique in the proof of Lemma 5, we can
show that the Jacobian evaluated at

(
β
(1)
3 v1 − λ1∥xc∥

λ2−λ1
v2

)
has an eigenvalue

λ1 − λ2

r2
(τ23 − τ3v

⊤
1 v2β

(1)
3 − r2);

and the Jacobian evaluated at
(
β
(2)
3 v1 − λ1∥xc∥

λ2−λ1
v2

)
has an

eigenvalue

λ1 − λ2

r2
(τ23 − τ3v

⊤
1 v2β

(2)
3 − r2).



Recall that the Jacobian evaluated at x∗,− has an eigenvalue
λ1 − λ2 − λ2∥xc∥

r , and then we only need to determine the
sign of these three eigenvalues case by case.

Case 3.4.1 If 0 < τ23 − r2 =
λ2
2∥xc∥2

(λ2−λ1)2
− r2, it is easy to

check that λ1−λ2− λ2∥xc∥
r > 0. In addition, similar to Case

3.3, we can show that {λ1−λ2

r2 (τ23 − τ3v
⊤
1 v2β

(i)
3 − r2) : i =

1, 2} contains one positive number and one negative number.
Thus Case 3.4.1, there are three undesirable equilibria in

total, two of which are saddle point and one of which is
asymptotically stable.

Case 3.4.2 If 0 = τ23 − r2 =
λ2
2∥xc∥2

(λ2−λ1)2
− r2, it is easy

to check that λ1 − λ2 − λ2∥xc∥
r = 0. In addition, we have

β
(2)
3 = 0 and the point

(
β
(2)
3 v1 − λ1∥xc∥

λ2−λ1
v2

)
is equal to

x∗,−.

The point
(
β
(1)
3 v1 − λ1∥xc∥

λ2−λ1
v2

)
is a saddle point since

the eigenvalue

λ1 − λ2

r2
(τ23 − τ3v

⊤
1 v2β

(1)
3 − r2) = 2

λ2 − λ1

r2
τ23 (v

⊤
1 v2)

2

>2
λ2 − λ1

r2
τ23 (1−

(λ1 − λ2)
2r2

λ2
2∥xc∥2

) > 0.

Thus in Case 3.4.2, there are two undesirable equilibria
in total, one of which is a saddle point and the other one
results in the Jacobian having a zero eigenvalue.

Case 3.4.3 If 0 > τ23 − r2 =
λ2
2∥xc∥2

(λ2−λ1)2
− r2, it is easy to

check that λ1 − λ2 − λ2∥xc∥
r < 0, which implies that x∗,−

is asymptotically stable.
By β

(1)
3 β

(2)
3 = τ23 − r2 < 0 and β

(1)
3 < τ3v

⊤
1 v2 < 0, it

follows that β(2)
3 > 0.

Using the fact that β(1)
3 < τ3v

⊤
1 v2 < 0, we can show that

λ1 − λ2

r2
(τ23 − τ3v

⊤
1 v2β

(1)
3 − r2) > 0.

Using the fact that β(1)
3 > 0 > τ3v

⊤
1 v2, we can show that

λ1 − λ2

r2
(τ23 − τ3v

⊤
1 v2β

(2)
3 − r2) > 0.

Thus in Case 3.4.3, there are three undesirable equilibria
in total, two of which are saddle point and one of which is
asymptotically stable.

We note that the above is the collection of all possible
cases, by which we conclude Proposition 6. Next, we can see
that there exists only one undesirable equilibrium and it is a
degenerate equilibrium if and only if Case 3.3 occurs, which
corresponds to Condition 1. If Case 3.4.2 (corresponding to
Condition 2) occurs, there are two undesirable equilibria, one
of which is a saddle point and the other one is a degenerate
equilibrium. Next, Case 1.1, 1.2 and 1.3 correspond to the
first, second and third columns of Table I respectively. In
addition, the first column of Table II includes Case 2.1 and
3.1; the second column of Table II includes Case 2.2 and
3.2; the third column of Table II includes Case 2.3, 3.4.1
and 3.4.3.

B. Proof of Proposition 7

If λ1 = λ2, we let Ã1 and Ã2 be any two matrices
satisfying the conditions of the third row and first row
of Table I, respectively. Then K1 = B−1(A − Ã1) and
K2 = B−1(A− Ã2) satisfy our requirement.

If λ1 ̸= λ2, we let Ã3 and Ã4 be any two matrices
satisfying the conditions of the third row and first row
of Table II, respectively. Then K1 = B−1(A − Ã3) and
K2 = B−1(A− Ã4) satisfy our requirement.

C. Proof of Proposition 8

Recall that the equation for undesirable equilibria can be
rewritten as (18), we consider two cases.
• Case #1: λ1 ̸= λ2. Let v1, v2 ∈ Cn be eigenvectors

such that Ãv1 = λ1v1, Ãv2 = λ2v2, ∥v1∥ = ∥v2∥ = 1.
Write xc as xc = β1v1+β2v2 and x = β3v1+β4v2. Hence,
the first equation in (18) can be rewritten as:

(λ1 − 2δ)(β3 − β1) = −λ1β1

(λ2 − 2δ)(β4 − β2) = −λ2β2 .
(25)

Note that β1 ̸= 0 and β2 ̸= 0 as xc is not an eigen-
vector of A − BK; it follows that there is no solution
with δ ∈ {λ1

2 , λ2

2 }. For any solution (x, δx) of (18), we
have that β3 − β1 = −λ1β1

λ1−2δx
, β4 − β2 = −λ2β2

λ2−2δx
and∥∥∥ −λ1β1

λ1−2δx
v1 +

−λ2β2

λ2−2δx
v2

∥∥∥2 − r2 = 0, which is equivalent to
F1(δ) = 0, where F1(δ) is defined in (17).

We first note that F1(δ) = 0 can have at most 4 solutions.
Therefore, there are four solutions at most for (18). In
addition, notice that F1(−∞) < 0, F1(+∞) < 0 and
F1(0) = (∥xc∥2 − r2)∥λ1λ2∥2 > 0, it follows that there
exists at least solution for (18) with positive δ and at least
one solution with negative δ.

If λ1 ≤ λ2, we have F1(−∞) < 0, and F1(
λ1

2 ) > 0; there
exists at least one solution for (18) with δ < λ1

2 .
• Case #2: λ1 = λ2. Note that both eigenvalues are

negative and xc is not an eigenvector; we let v1, v2 ∈ Rn

be vectors of length 1, such that Ãv1 = λ1v1, Ãv2 =
λ1v2+v1. We write xc = β1v1+β2v2 and x = β3v1+β4v2.

Hence, the first equation in (18) can be rewritten as

(λ1 − 2δ)(β3 − β1) + (β4 − β2) = −λ1β1 − β2

(λ2 − 2δ)(β4 − β2) = −λ2β2 .
(26)

Note that β2 ̸= 0 as xc is not an eigenvector of
A − BK; it follows that there is no solution with 2δ =
λ1. For any solution (x, tx) of equation (18), we have
β3 − β1 = −λ1β1

λ1−2δx
+ 2δxβ2

(λ1−2δx)2
, β4 − β2 = −λ2β2

λ2−2δx
and∥∥∥( −λ1β1

λ1−2δx
+ 2δxβ2

(λ1−2δx)2

)
v1 +

−λ2β2

λ2−2δx
v2

∥∥∥2 − r2 = 0, which
is equivalent to F2(δ) = 0, where F2(δ) is defined as

F2(δ) := −(λ1 − 2δ)4r2 + (λ1β2)
2(λ1 − 2δ)2

+ 2(λ1β1(λ1 − 2δ)2 − 2δ(λ1 − 2δ)β2)λ1β2v
⊤
1 v2

+ (2δβ2 − λ1(λ1 − 2δ)β1)
2.

We first note that F2(δ) = 0 can have at most 4 solutions.
Therefore, there are four solutions at most for (18). In addi-
tion, notice that F2(+∞) < 0 and F2(0) = (∥xc∥2−r2)λ4

1 >



0; it follows that there exists at least a solution for (18) with
positive δ. Similarly, we have that 1

(λ1−2δ)4F2(δ) < 0 as

δ → −∞, and 1
(λ1−2δ)4F2(δ) → +∞ as δ → λ−

1

2 ; then. there
exists at least one solution for (18) with negative δ < λ1

2 .
To conclude, there always exists at least one solution with

negative δ and at least one solution with positive δ for (18).
In addition, (18) can have four solutions at most. If λ1 ≤ λ2,
there exists a solution for (18) with indicator δ < λ1

2 .

D. Proof of Proposition 9

Let x ∈ Ê with indicator δx < λ1

2 , and write x =
β3v1 + β4v2; then, it follows by Lemma 5 that the
Jacobian evaluated at x has an eigenvalue greater than
(λ2−λ1)

r2
−λ1

λ1−2δx
((β3 − β1)β1 + (β4 − β2)β1v

⊤
2 v1). Notice

that (λ2−λ1)
r2

−λ1

λ1−2δx
> 0 and

(β3 − β1)β1 + (β4 − β2)β1v
⊤
2 v1

=
−λ1

λ1 − 2δx
β2
1 +

−λ2

λ2 − 2δx
β1β2v

⊤
2 v1

≥ −λ2

λ2 − 2δx
(β2

1 + β1β2v
⊤
2 v1) ≥ 0 .

Hence, the Jacobian evaluated at x has an positive eigenvalue
and, thus, x is a saddle point.

For any x ∈ Ê with indicator λ2

2 < δx < 0, write
x = β3v1 + β4v2; then, by Lemma 5, it follows that
the Jacobian evaluated at x has an eigenvalue less than
(λ2−λ1)

r2
2λ2

λ2−2δx
((β3 − β1)β2v

⊤
1 v2 + (β4 − β2)β2). Notice

that (λ2−λ1)
r2

2λ2

λ1−2δx
> 0 and

(β3 − β1)β2v
⊤
2 v1 + (β4 − β2)β2

=
−λ1

λ1 − 2δx
β1β2v

⊤
2 v1 +

−λ2

λ2 − 2δx
β2
2

≤ −λ1

λ1 − 2δx
(β1β2v

⊤
2 v1 + β2

2) ≤ 0.

Besides, by Lemma 2, −α0 is another eigenvalue. Hence, all
the eigenvalues of the Jacobian evaluated at x are negative,
which means that x is an undesirable asymptotically stable
equilibrium.

To prove the last claim, let δ0 denote the only real root
of the third-order polynomial dF1(δ)

dδ . It follows that F1(δ)
is monotonically increasing on (−∞, δ0) and monotonically
decreasing on (δ0,+∞); this implies that F1(δ) = 0 only has
two solutions. By Lemma 5, there is only one undesirable
equilibrium and its indicator satisfies δ < λ1

2 . Since β2
1 +

β1β2v
⊤
1 v2 ≥ 0, there is only one undesirable equilibrium

and it is a saddle point.
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