
1

Safe and Dynamically-Feasible Motion Planning
using Control Lyapunov and Barrier Functions

Pol Mestres Carlos Nieto-Granda Jorge Cortés

Abstract—This paper considers the problem of designing mo-
tion planning algorithms for control-affine systems that generate
collision-free paths from an initial to a final destination and can
be executed using safe and dynamically-feasible controllers. We
introduce the C-CLF-CBF-RRT algorithm, which produces paths
with such properties and leverages rapidly exploring random
trees (RRTs), control Lyapunov functions (CLFs) and control
barrier functions (CBFs). We show that C-CLF-CBF-RRT is
computationally efficient for linear systems with polytopic and el-
lipsoidal constraints, and establish its probabilistic completeness.
We showcase the performance of C-CLF-CBF-RRT in different
simulation and hardware experiments.

I. INTRODUCTION

Motion planning refers to the problem of computing a
collision-free trajectory for a mobile agent to go from an
initial state to a goal state. Motion planning algorithms are the
backbone of many robotics applications, but their implemen-
tation remains challenging for robots with complex dynamics
and environments with irregular obstacles. Even in scenarios
where the robot dynamics and the environment obstacles are
known, obtaining motion plans is in general a challenging task.
Most motion planning algorithms generate high-level plans,
consisting of sequences of waypoints in the configuration
space, and assume the availability of low-level controllers
that can follow such waypoints while avoiding collisions with
obstacles. An example of low-level controllers frequently used
in applications requiring collision-free navigation are those
based on control barrier functions (CBFs) for safety and
control Lyapunov functions (CLFs) for stability. However,
controllers that simultaneously address safety and stability
of the different waypoints might in general be not well-
defined. This work is motivated by the need to bridge the
gap between motion planner implementations and low-level
CLF-CBF controllers that produce dynamically feasible safe
trajectories.

Literature Review: Trajectory optimization methods in mo-
tion planning [1]–[3] seek to directly design trajectories from
the initial state to the goal state that take into account the
robot dynamics. These methods usually formulate the planning
problem as a high-dimensional nonconvex problem, which
can be difficult to solve efficiently by off-the-shelf solvers.
To address this, it is common to restrict the problem to
a parametric class: [4], [5] uses the so-called MINVO ba-
sis, [6] uses B-splines, and [7], [8] use polynomial basis.

P. Mestres and J. Cortés are with the Department of Mechani-
cal and Aerospace Engineering, University of California, San Diego,
{pomestre,cortes}@ucsd.edu. Carlos Nieto-Granda is with the DEV-
COM US Army Research Laboratory (ARL), Adelphi, Maryland, car-
los.p.nieto2.civ@army.mil.

Even with the restriction to such parametric classes, the
trajectory optimization problems remain nonconvex, and their
complexity scales with the dimension of the parameter space.
One exception is the recent work [9], which formulates the
trajectory optimization problem as a shortest path problem in
Graphs of Convex Sets [10], an optimization framework that
allows the trajectory optimization problem to be formulated as
a mixed-integer convex program for trajectories parameterized
by Bernstein polynomials. Despite the low runtimes that this
algorithm exhibits in a variety of different robotic systems, it
requires a partition of the environment in convex sets, which
needs to be precomputed offline.

Regardless of the computational complexity, the restriction
of trajectory optimization methods to parametric classes means
that they are only guaranteed to produce dynamically feasible
solutions for special classes of systems (for example [4]–
[7] work for quadrotors, and [8] for feedback linearizable
systems). Furthermore, since the controllers needed to track
these trajectories are generally open loop, they do not possess
the inherent robustness properties associated with feedback
control (an exception is [3], which uses model predictive
control to generate optimal trajectories).

Our work is more closely aligned with sampling-based
motion planning methods [11], which seeks to find a collision-
free path from an initial state to a goal state through randomly
sampling the state space. Despite its simplicity, it has been
shown to be a practical solution for efficiently finding feasible
paths even for high-dimensional problems. Rapidly-exploring
random trees (RRTs) [12] and its variants [13], [14] are a
family of sampling-based motion planning algorithms that
are simple to implement and are probabilistically complete,
meaning that a feasible path (if it exists) is found with prob-
ability one as the number of samples goes to infinity. RRTs
build a tree rooted at a starting configuration and efficiently
explore the configuration space by adding more samples.
Despite the widespread use of RRT and the variants outlined
above, their performance in systems with general differential
constraints and dynamics remains limited, since they rely
on the ability to connect any neighboring nodes of the tree
with a dynamically feasible trajectory. This requires solving
a two-point boundary value problem (BVP) [15, Chapter 14],
which in general is challenging. Different works [16], [17]
address this problem by developing algorithms that achieve
optimality guarantees for different classes of systems without
requiring the use of a BVP solver. On the one hand, [16]
considers controllable linear systems, for which the explicit
solution of the BVP can be computed, and [17] focuses on
non-holonomic systems where Chow’s condition holds, whose

2

accessibility properties can also be used to sidestep the use of
a BVP solver. Alternatively, other works introduce heuristics
that approximate the solution of the BVP: [18], [19] do it
using the linear quadratic regulator, and [20] leverages bang-
bang controllers. Other works circumvent solving the BVP
by using learning-based approaches. For instance, [21], [22]
introduces an offline machine learning phase that learns the
solution of the BVP, [23] refines the generation of the dataset
used in this offline phase, and [24] learns the solution of
the BVP using reinforcement learning techniques. There are
also approaches [25] that combine the benefits of trajectory
optimization methods with RRT, by constructing a tree of
optimized trajectories along with tubes defining their regions
of attraction, derived with sum-of-squares programming [26].

Here we bypass the need to solve the BVP or to op-
timize over sets of trajectories by using two sets of well-
established tools: control Lyapunov functions (CLFs) [27],
for designing stabilizing controllers for nonlinear systems,
and control barrier functions (CBFs) [28], [29], for rendering
safe a desired set. In applications where safety and stability
specifications need to be met simultaneously, the CLF and
CBF conditions can be combined in a variety of different
formulations including a quadratic program with a relaxation
variable [30], safety filters [31] (where the CBF condition
acts on top of a stabilizing nominal controller), or designs
based on penalty methods [32]. Even though these control
designs have shown great success in applications such as
adaptive cruise control [33] and bipedal walking [34], different
works have shown that, when combined, they can lead to the
existence of undesired equilibria [35]–[37], which can even be
asymptotically stable and have large regions of attraction, or
the lack of feasibility [32], [38], [39] between the CBF and
CLF conditions.

There exist a few works in the literature [40]–[43] that
combine the effectiveness of RRT-based algorithms with the
safety guarantees and computational efficiency provided by
CBFs and CLFs, hence also bypassing the need to compute
the solution of a BVP. However, these approaches require
the simulation of trajectories derived from a CLF-CBF-based
controller in order to determine whether new candidate nodes
should be added to the tree. The repeated simulation of
such trajectories can significantly slow down the search for
a feasible path and compromise the computational efficiency
of the resulting algorithm. Moreover, these existing works
can be prone to safety violations as a consequence of the
numerical errors introduced when simulating these trajectories,
and do not formally ensure that the low-level CLF and CBF-
based controller possesses both safety and stability guarantees.
Finally, [44] introduces LQR-CBF-RRT*, which is asymptot-
ically optimal and also leverages CBFs to ensure collision-free
trajectories. Moreover, this method does not require simulating
trajectories obtained with a CLF-CBF-based controller. How-
ever, the CBF condition is only verified at a finite sequence
of points along a trajectory, which might compromise safety
in-between such sampled points. Furthermore, the reference
trajectory is generated through an LQR-based controller of a
linearized model, which might also not be stabilizing for the
original nonlinear system.

Statement of Contributions: We consider the problem of
designing motion planning algorithms that generate collision-
free paths from an initial to a final destination for systems
with control-affine dynamics. To ensure that the sequence of
waypoints generated by the sampling-based algorithm can be
tracked by a controller while ensuring safety and stability, we
leverage the theory of CBFs and CLFs. Our contributions are:

(i) We introduce a result of independent interest which
shows that the problem of verifying whether a CLF and
a CBF are compatible in a set of interest can be solved
by solving an optimization problem;

(ii) Although in general such optimization problem is non-
convex, we show that for linear systems and CBFs
of polytopic or ellipsoidal obstacles, it reduces to a
quadratically constrained quadratic program (QCQP),
and for CBFs of circular obstacles it can be solved in
closed form;

(iii) We leverage the results on compatibility checking of
a CLF-CBF pair to develop Compatible CLF-CBF-
RRT (or C-CLF-CBF-RRT for short), a sampling-
based motion planning algorithm that is a variant of
RRT. We show that, by construction, C-CLF-CBF-RRT
generates collision-free paths that can be executed with
a CLF-CBF-based controller, and formally establish it
is probabilistically complete;

(iv) We show how our proposed approach can be generalized
to systems where safety constraints have a high relative
degree;

(v) We illustrate our results in simulation and hardware ex-
periments for differential drive robots and compare them
with the literature, showing that C-CLF-CBF-RRT can
generate safe and stable paths with a better average
execution time.

Noteworthy properties of C-CLF-CBF-RRT as compared
to the literature are: it does not require generating closed-loop
trajectories at every sampling step because of the compatibility
verification of CLF-CBF pairs; it avoids the potential safety
violations that occur as a consequence of the numerical errors
introduced when simulating trajectories; its computational
complexity is tractable provided that the optimization problem
verifying the compatibility of the CLF and CBF is tractable;
and it ensures by construction that the sequence of generated
waypoints can be robustly asymptotically tracked by a safe
controller, without introducing unwanted dynamical behaviors
such as undesired equilibria, and while ensuring that the
optimization problem defining such controller is recursively
feasible.

Notation: We denote by Z>0, R, and R≥0 the set of positive
integers, real, and nonnegative real numbers, resp. For N ∈
Z>0, we denote [N] = {1, 2, . . . , N}. Given x ∈ Rn, ‖x‖
denotes its Euclidean norm. Given matrix B ∈ Rn×m, Im(B)
denotes its image. The symbols In, 0n denote the identity
and zero matrices of dimension n ∈ Z>0, and 0n is the zero
vector of dimension n. Given a set S ⊂ Rn, we denote its
boundary by ∂S and its closure by Cl(S). Given an arbitrary
set A, we let P(A) be the power set of A, i.e., the set of
all subsets of A, including the empty set and A itself. We
denote by B(x, δ) the Euclidean closed ball of center x ∈ Rn

3

and radius δ > 0, i.e., B(x, δ) := {y ∈ Rn : ‖y − x‖ ≤
δ}. Given f : Rn → Rn, g : Rn → Rn×m and a smooth
W : Rn → R, the notation LfW : Rn → R (resp., LgW :
Rn → Rm) denotes the Lie derivative of W with respect
to f (resp., g), that is LfW = ∇WT f (resp., ∇WT g). A
function β : R→ R is extended class K∞ if it is continuous,
β(0) = 0, β is strictly increasing and lim

s→±∞
β(s) = ±∞.

A function V : Rn → R is positive definite with respect to
q ∈ Rn if V (q) = 0 and V (x) > 0 for x 6= q. Given a locally
Lipschitz function f : Rn → R, its generalized gradient at
x ∈ Rn is ∂f(x) = co{ lim

i→∞
∇f(xi) : xi → x, xi /∈ S∪Γf},

where Γf is the zero-measure set where f is non-differentiable
and S is any set of measure zero. An undirected graph M
is a pair M = (V, E), where V = {1, . . . , N} is a finite
set called the vertex set, E ⊂ V × V is called the edge set
where (i, j) ∈ E if and only if (j, i) ∈ E . A path in M is a
sequence of vertices v1, . . . , vk, with k ∈ Z>0, such that for
all i ∈ [k−1], (vi, vi+1) ∈ E . A tree is an undirected graph in
which there exists a single path between any pair of vertices.

II. PRELIMINARIES

Here we review control Lyapunov functions, control barrier
functions, and rapidly exploring random trees. For reference,
we provide a summary table of the symbols used throughout
the paper in Table III.

A. Control Lyapunov and Control Barrier Functions
Consider a control-affine system

ẋ = f(x) + g(x)u, (1)

where f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz functions, with x ∈ Rn the state and u ∈ Rm the
input. Throughout the paper, and without loss of generality,
we assume f(0) = 0, so that the origin x = 0 is the desired
equilibrium point of the (unforced) system.

We start by recalling the notion of Control Lyapunov
function (CLF) [45], [46].

Definition II.1. (Control Lyapunov Function): Given an open
set D ⊆ Rn, a point q ∈ Rn with q ∈ D, a continuously
differentiable function V : Rn → R is a CLF with respect to
q in D for the system (1) if
• V is proper in D, i.e., {x ∈ D : V (x) ≤ c} is a compact

set for all c > 0,
• V is positive definite with respect to q,
• there exists a continuous positive definite function W :

Rn → R with respect to q such that, for each x ∈ D,
there exists a control u ∈ Rm satisfying

LfV (x) + LgV (x)u ≤ −W (x). (2)

CLFs provide a way to guarantee asymptotic stability of
the origin. Namely, if a Lipschitz controller ust : Rn → Rm is
such that, for every x ∈ D, u = ust(x) satisfies (2), then the
origin is asymptotically stable for the closed-loop system [45].
Such controllers can be synthesized by means of the pointwise
minimum-norm (PMN) control optimization [46, Chapter 4.2],

u(x) = arg min
u∈Rm

1

2
‖u‖2

s.t. (2) holds.

Note that, at each x ∈ Rn, this is a quadratic program in u.
Next we define the notion of Boolean Nonsmooth Control

Barrier Function (BNCBF), adapted from [47, Definition II.8].

Definition II.2. (BNCBF [47, Definition II.8]): Given N ∈
Z>0, let hi : Rn → R, for i ∈ [N], be continuously
differentiable functions. Let h(x) = maxi∈[N] hi(x) and

C = {x ∈ Rn : h(x) ≥ 0}, (3a)
∂C = {x ∈ Rn : h(x) = 0}. (3b)

Suppose that the set C is nonempty. Then, h is a BNCBF of
C for (1) if there exists a locally Lipschitz extended class K∞
function α : R → R such that for every x ∈ C there exists
u ∈ Rm such that,

min
v∈∂h(x)

vT (f(x) + g(x)u) ≥ −α(h(x)).

In case N = 1, Definition II.2 reduces to the standard notion
of Control Barrier Function [28, Definition 2]. Given x ∈ Rn,
let I(x) := {i ∈ [N] : h(x) = hi(x)} denote the set of active
functions. The following result is adapted from [47, Theorem
III.6] and provides a sufficient condition for h to be a BNCBF.

Proposition II.3. (Sufficient Condition for BNCBF): Suppose
there is an extended class K∞ function α : R→ R such that,
for all x ∈ Rn, there exists u ∈ Rm with

Lfhi(x) + Lghi(x)u ≥ −α(h(x)), (4)

for all i ∈ I(x). Then, h is a BNCBF of C.

If a measurable and locally bounded controller us : Rn →
Rm is such that, for every x ∈ Rn, u = us(x) satisfies (4),
then us renders C forward invariant (cf. [47, Theorem II.7,
Definition II.8]).

When dealing with both safety and stability specifications,
it is important to note that an input u might satisfy (2) but
not (4), or vice versa. The following notion, adapted from [39,
Definition 2.3], captures when a CLF V and a BNCBF h are
compatible.

Definition II.4. (Compatibility of CLF-BNCBF pair): LetD ⊆
Rn be open, C ⊂ D be closed, V a CLF on D and h a
BNCBF of C. Then, V and h are compatible in a set D̃ ⊂ D
if there exist a positive definite function W : Rn → R and
an extended class K∞ function α : R → R such that, for all
x ∈ D̃, there exists u ∈ Rm satisfying (2) and (4) for all
i ∈ I(x) simultaneously.

If V and h are compatible in a set D̃, we can define the
minimum norm controller that satisfies the CLF and BNCBF
conditions u∗ : D̃ → Rm as follows:

u∗(x) := arg min
u∈Rm

1

2
‖u‖2 (5)

s.t. LfV (x) + LgV (x)u ≤ −W (x),

Lfhi(x) + Lghi(x)u ≥ −α(h(x)), ∀ i ∈ I(x).

If u∗ is locally Lipschitz, then it ensures that C is forward
invariant and that the origin is asymptotically stable for the
closed-loop system.

4

B. Rapidly-exploring Random Trees (RRTs)

Here, we review GEOM-RRT [13], cf. Algorithm 1, a
version of RRT [12] upon which we rely later. The input for

Algorithm 1 GEOM-RRT

1: Parameters: xinit,Xgoal, k, η
2: T .init(xinit)
3: for i ∈ [1, . . . , k] do
4: xrand ← RANDOM STATE
5: xnear ← NEAREST NEIGHBOR(xrand, T)
6: xnew ← NEW STATE(xrand, xnear, η)
7: if COLLISION FREE(xnear, xnew) then
8: T .add vertex(xnew)
9: T .add edge(xnear, xnew)

10: if xnew ∈ Xgoal then
11: return T
12: end if
13: end if
14: end for
15: return T

GEOM-RRT consists of a state space X , an initial configuration
xinit, goal region Xgoal, number of iterations k, and a steering
parameter η whose use is defined in the sequel. The algorithm
builds a tree T by executing k iterations of the following form:

At each iteration, a new random sample
xrand is obtained by uniformly sampling X
using RANDOM STATE(). The function
NEAREST NEIGHBOR(xrand, T) returns the vertex
xnear from T that is closest in the Euclidean distance
to xrand. Next, a new configuration xnew ∈ X is
returned by the NEW STATE function such that
xnew is on the line segment between xnear and xrand
and the distance ‖xnear − xnew‖ is at most η. Finally,
the function COLLISION FREE(xnear, xnew) checks
whether the straight line from xnear and xnew is
collision free. If this is the case, xnew is added as a
vertex to T and is connected by an edge from xnear.
If xnew ∈ Xgoal, there exists a single path in T from
xinit to xnew.

A notable property of GEOM-RRT is that it is probabilisti-
cally complete, meaning that the probability that the algorithm
will return a collision-free path from the initial state to the goal
state (if one exists) approaches one as the number of iterations
tends to infinity [48].

III. PROBLEM STATEMENT

Let R be a compact and convex set in Rn containing M
known obstacles {Ol}Ml=1, with Int(Oi) ∩ Int(Oj) = ∅ for all
i 6= j ∈ [M]. Let F := R\∪Ml=1Ol denote the safe space. For
each l ∈ [M], we assume that there exists a positive integer
Nl ∈ Z>0 and known continuously differentiable functions
{hi,l : Rn → R}i∈[Nl] such that Ol := {x ∈ Rn : hl(x) =
maxi∈[Nl] hi,l(x) < 0}. Even though this imposes a specific
structure on the set Ol, one can obtain more complex obstacles
by considering sets of the form ∪i∈MOi, with M a subset
of [M].

The robot dynamics are control-affine of the form (1), with
f : Rn → Rn and g : Rn → Rm locally Lipschitz. For each
l ∈ [M], hl is a BNCBF of Rn\Ol for these dynamics, with
associated extended class K∞ function αl. We also assume

∇hi,l(x)T g(x) 6= 0m, ∀x ∈ F , l ∈ [M], i ∈ [Nl],

i.e., one differentiation of hi,l already makes the input u
appear explicitly. Given an initial state xinit ∈ R and a final
goal set Xgoal ⊂ R, our aim is to develop a sampling-based
motion planning algorithm that constructs a collision-free path
A := {xi}Na

i=1 from xinit to Xgoal that is dynamically feasible,
i.e., such that for each pair of consecutive waypoints in A,
there exists a control law that generates a safe trajectory that
connects them. Our approach to solve this problem leverages
the theory of CLFs and BNCBFs to design controllers which
(i) have safety and stability guarantees by design, and (ii) can
be implemented efficiently to help reduce the computational
burden of generating dynamically feasible trajectories.

IV. CLF AND BNCBF COMPATIBILITY VERIFICATION

The key challenge in our proposed approach to the problem
outlined in Section III is that the optimization (5) defining
the CLF-CBF-based controller has to be feasible at all points
along the trajectory. In this section we tackle this problem
and show how such a feasibility check can be performed in
general, and how it is efficient in two specific cases of interest.

A. Compatibility Verification for General Dynamics and Ob-
stacles

In this section we consider the problem of verifying that
a CLF and a BNCBF are compatible in systems for general
dynamics and obstacles. The following result gives a charac-
terization for when a CLF and a BNCBF are compatible in
the region R.

Proposition IV.1. (Characterization of CLF-BNCBF Com-
patibility): Given q ∈ F , let Vq : Rn → R be a CLF
of (1) with respect to q. Let l ∈ [M] and assume that hl
is a BNCBF of Rn\Ol. Let Wq : Rn → R be a positive
definite function with respect to q and αl : R → R be an
extended class K∞ function. For each J ⊂ P([Nl]), let
Zl,J := {x ∈ Rn : Il(x) = J } denote the set of points
where the active constraints defining obstacle Ol correspond
to the indices in J . For Γ ⊂ R, define

ζ1 = min
x∈Γ

{βi∈R}i∈J

∥∥∥∑
i∈J

βiLghi,l(x)− LgVq(x)
∥∥∥2

(6a)

s.t. βi ≥ 0, i ∈ J , (6b)
hj,l(x) ≤ hi,l(x), ∀j /∈ J , i ∈ J , (6c)
hl(x) ≥ 0. (6d)

If ζ1 6= 0, then Vq and hl are compatible in Zl,J ∩ Γ ∩ F .
Otherwise, if ζ1 = 0, let

ζ2 = min
x∈Γ

{βi∈R}i∈J

Φ(x, {βi}i∈J), (7a)

s.t.
∑
i∈J

βiLghi,l(x) = LgVq(x), (7b)

5

βi ≥ 0, i ∈ J , (7c)
hj,l(x) ≤ hi,l(x), ∀j /∈ J , i ∈ J , (7d)
hl(x) ≥ 0, (7e)

for Φ(x, {βi}i∈J) = −Wq(x) − LfVq(x) +∑
i∈J βi(Lfhi,l(x) + αl(hi,l(x))). If ζ2 ≥ 0, then Vq

and hl are compatible in Zl,J ∩ Γ ∩ F . Conversely, if Vq
and hl are compatible in Zl,J ∩ Γ ∩ F then there exists
an extended class K∞ function αl and a positive definite
function Wq with respect to q such that either ζ1 6= 0 or
ζ1 = 0 and ζ2 ≥ 0.

Proof. First note that if ζ1 = 0, the optimization prob-
lem (7) is feasible and therefore ζ2 is well-defined. By Farkas’
Lemma [49], Vq and hl are compatible at x ∈ Zl,J ∩Γ∩F if
and only if for some positive definite function Wq with respect
to q and some extended class K∞ function αl, there do not
exist β0 ∈ R≥0, {βi}i∈J ⊂ R≥0 such that

β0LgVq(x) =
∑
i∈J

βiLghi,l(x), (8a)

β0(−LfVq(x)−W (x))

+
∑
i∈J

βi(αl(hi,l(x)) + Lfhi,l(x)) < 0. (8b)

First suppose that for some Wq and αl, either ζ1 6= 0 or
ζ1 = 0 and ζ2 ≥ 0. Suppose there exists a solution s∗1 =
(x∗, β∗0 , {β∗i }i∈Il(x)) of (8) and let us reach a contradiction.
If β∗0 = 0, then, (8) implies that the constraints Lfhi,l(x) +
Lghi,l(x)u ≥ −αl(hi,l(x)) are not simultaneously feasible,
which means that hl is not a BNCBF, hence arriving at a
contradiction. Therefore, s∗1 must be such that β∗0 > 0. By
taking β̃i = βi

β0
for i ∈ J , we deduce that (x∗, {β̃i}i∈J) is a

solution of (6) with a value of the objective function equal to
zero. This means that if ζ1 6= 0, the solution s∗1 does not exist
and Vq and hl are compatible in Zl,J ∩ Γ ∩ F . Otherwise, if
ζ1 = 0, then (x∗, {β̃i}i∈J) is a solution of (7) with a strictly
negative value of the objective function. This means that if
ζ1 = 0 and ζ2 ≥ 0, the solution s∗1 does not exist and Vq and
hl are compatible in Zl,J ∩ Γ ∩ F . Conversely, suppose that
Vq and hl are compatible in Zl,J ∩ Γ ∩ F . This implies that
there exists Wq and αl such that (8) has no solution. If (8a)
has no solution, then ζ1 6= 0. If (8a) has a solution but (8b)
does not, then ζ1 = 0 and ζ2 ≥ 0.

Note that Proposition IV.1 is valid for any set Γ ⊂ R.
Intuitively, since the CLF and BNCBF conditions define
half-spaces in the control input u, (6) checks whether the
normal vectors of the hyperplanes defining such half-spaces
are linearly independent. If this condition does not hold, (7)
checks whether the input-independent terms of the CLF and
BNCBF conditions leave enough space for such conditions to
be compatible. Additionally, optimization problems (6) and (7)
need to be checked for every possible set of active constraints.
The constraints (6c) and (7d) ensure that J is the set of
active constraints at x. Often, one is interested in verifying
the compatibility of a CLF and a BNCBF only in a small
subset of R, in which case the flexibility provided by the set
Γ is useful.

Remark IV.2. (Checking for all Possible Sets of Active
Constraints): Given a subset J ⊂ P([Nl]) of functions {hi,l},
Proposition IV.1 provides a way to verify if the CLF and the
BNCBF are compatible at the points in the region of interest
Γ∩F where such functions are active. Let Hl,J := {x ∈ Γ :
Il(x) = J } be the points in Γ where the constraints with
index in J are active, and Sl := {J ⊂ P([Nl]) : Hl,J 6= ∅}
be the sets of indices for which the above set is nonempty. The
class Sl contains all possible sets of active constraints in Γ.
By checking the condition in Proposition IV.1 for all J in Sl,
we can verify if the CLF and the BNCBF are compatible in
Γ ∩ F . In practice, given a region Γ where we are interested
in checking the compatibility of Vq and hl, one can often
identify the indices that can achieve a maximum value in Γ
(for example, for polytopic obstacles in the plane, only a few
of the functions hi,l have points in Γ where they take positive
values). This means that the cardinality of Sl is often small
and the number of checks using Proposition IV.1 can be kept
small. •

Remark IV.3. (Verifying Compatibility for Multiple
BNCBFs): Proposition IV.1 actually provides a way to
check whether the optimization problem (5) is feasible at
all points of Γ. This can be done as follows: one first finds
all l ∈ [M] such that Γ ∩ Ol 6= ∅. If Γ can be expressed
as the 0-sublevel set of a convex differentiable function γ,
i.e., Γ := {x ∈ Rn : γ(x) ≤ 0}, and the functions hi,l are
convex, then this can be solved efficiently by checking that
the solution of the convex problem

min
x∈Rn

γ(x)

s.t. hi,l(x) ≤ 0, ∀i ∈ [Nl]

is non-positive. The BNCBF constraints associated with those
l′ ∈ [M] such that Γ∩Ol′ = ∅ can be neglected since, given a
controller that satisfies all the other BNCBF constraints, it can
be shown to also satisfy the BNCBF constraints for such l′ ∈
[M] by taking the corresponding extended class K∞ function
αl′ linear with sufficiently large slope. On the other hand, for
l′ ∈ [M] such that Γ ∩Ol′ 6= ∅, Proposition IV.1 ensures that
there exists a small neighborhood around ∂Ol′ , not containing
points of any other obstacle, where V and hl′ are compatible.
By taking the extended class K∞ functions of the other CBF
constraints as linear functions with sufficiently large slope, (5)
is feasible in each of these neighborhoods. Finally, for points
in Γ not belonging to any of these neighborhoods, the extended
class K∞ functions can also be taken as linear with sufficiently
large slope to guarantee that (5) is feasible. •

Remark IV.4. (About the Choice of CLF and Class K∞ Func-
tion): Note that, when solving the optimization problems (6)
and (7) for fixed Vq , αl, and Wq , it is not guaranteed that
ζ1 6= 0 or ζ1 = 0 and ζ2 ≥ 0. If α̃ is an extended class
K∞ function with α̃(s) ≥ α(s) for all s ∈ R, the objective
function Φ of (7) does not decrease at any point, which means
that the value of ζ1 remains the same, but the condition ζ2 ≥ 0
becomes easier to satisfy. A similar behavior occurs if W̃
is a positive definite function with W̃ (x) ≤ W (x) for all
x ∈ Rn. We leverage these observations in Section V when
we introduce our proposed motion planning algorithm. •

6

Remark IV.5. (Regularity Properties of the Controller): If Vq
and hl are compatible in R for all l ∈ [M], the CLF-CBF-
based controller (5) is well defined, i.e., the optimization (5)
is feasible for all points in R. However, slightly stronger
conditions are needed to ensure that such CLF-CBF-based
controller is locally Lipschitz and therefore can be used to
render C forward invariant and the origin asymptotically stable.
We refer the reader to [50] for a survey on different conditions
that ensure continuity, Lipschitzness, and other regularity
properties of optimization-based controllers of the form (5).
These conditions are often satisfied in practice and are mostly
related to the dynamics and the specific obstacles, which in our
problem here are given and not subject to design. Therefore,
throughout this work, we assume that (5) satisfies at least one
of the sufficient conditions outlined in [50] that ensure that
the resulting controller is locally Lipschitz. •

Remark IV.6. (Input Constraints): In many applications,
one is interested in verifying whether the CLF and BNCBF
conditions are simultaneously feasible with a control input u
constrained to lie on the set {u ∈ Rm : C1u ≤ c2}, with
C1 ∈ Rc×m, c2 ∈ Rc, and c ∈ Z>0. Equivalently, we seek to
verify whether the inequalities

Lfhj,l(x) + Lghj,l(x)u ≥ −αi,l(hj,l(x)),

∀j ∈ Il(x), l ∈ [M],

LfVi(x) + LgVi(x)u+Wi(x) ≤ 0, (9)
C1u ≤ c2,

are simultaneously feasible. This problem can also
be treated using Farkas’ Lemma [49] to obtain a
result analogous to Proposition IV.1. For example,
the objective function in (6) should be adjusted to∥∥∑

i∈J βjLghi,l(x)− LgVq(x)− CT1 β̄
∥∥, where β̄ ∈ Rc

is an additional optimization variable with entries that
are required to be positive. Instead, the objective function
in (7) should be adjusted to β̄T c2 − Wq(x) − LfVq(x) +∑
i∈J βi(Lfhi,l(x) + αl(hi,l(x))). •

Proposition IV.1 shows that the problem of checking
whether a CLF and a BNCBF are compatible in a region
of interest can be reduced to solving a pair of optimization
problems. However, in general, the optimization problems (6)
and (7) are not convex and can be computationally intractable.
Our forthcoming exposition provides two particular cases of
dynamics and obstacles for which these two optimization
problems are computationally tractable.

B. Compatibility Verification for Linear Systems and Polytopic
Obstacles

In this section we particularize our discussion to linear
dynamics,

ẋ = Ax+Bu, (10)

where A ∈ Rn×n, B ∈ Rn×m, and the obstacles are polytopic
(i.e., the functions hi,l are affine). We start by introducing
some useful notation. For each l ∈ [M], let ai,l ∈ Rn, bi,l ∈ R
be such that hi,l(x) = aTi,lx+ bi,l. We further assume that hl

is a BNCBF, i.e., there exists an extended class K∞ function
αl such that, for all x ∈ Rn\Ol, there exists u ∈ Rm with

aTi,l(Ax+Bu) ≥ −αl(aTi,lx+ bi,l)

for all i ∈ Il(x). We further assume that given q ∈ Rn, a
quadratic CLF is available, i.e., we have a positive definite
matrix P ∈ Rn×n such that Vq : Rn → R, defined as Vq(x) =
(x − q)TP (x − q), is a CLF with respect to q in Rn of (10)
with associated positive definite function Wq : Rn → R.

The following result follows by applying Proposition IV.1
to the case when dynamics are linear and obstacles polytopic.

Proposition IV.7. (CLF-BNCBF Compatibility for Linear
Dynamics and Polytopic Obstacles): Let Γ ⊂ R, l ∈ [M],
J ∈ P([Nl]), q ∈ F , and define

ζ1 := min
x∈Γ

{βi∈R}i∈J

∥∥∥∥∥∑
i∈J

βiB
Tai,l −BTP (x− q)

∥∥∥∥∥
2

(11a)

s.t. βi ≥ 0, ∀i ∈ J , (11b)

aTj,lx+ bj,l ≤ aTi,lx+ bi,l, ∀j /∈ J , i ∈ J , (11c)

aTi,lx+ bi,l ≥ 0, i ∈ J . (11d)

If ζ1 6= 0, then Vq and hl are compatible in Zl,J ∩ Γ ∩ F .
Otherwise, if ζ1 = 0, let

ζ2 := min
x∈Γ

{βi∈R}i∈J

Φ(x, {βi}i∈J) (12a)

s.t.
∑
i∈J

βiB
Tai,l = BTP (x− q), (12b)

βi ≥ 0, ∀i ∈ J , (12c)

aTj,lx+ bj,l ≤ aTi,lx+ bi,l, ∀j /∈ J , i ∈ J , (12d)

aTi,lx+ bi,l ≥ 0, i ∈ J , (12e)

with Φ(x, {βi}i∈J) = −Wq(x) − (x − q)TPAx +∑
i∈J βi(αl(a

T
i,lx + bi,l) + aTi,lAx). If ζ2 ≥ 0, then Vq and

hl are compatible in Zl,J ∩ Γ ∩ F . Conversely, if Vq and hl
are compatible in Zl,J ∩Γ∩F , then there exists an extended
class K∞ function αl and a positive definite function Wq with
respect to q such that either ζ1 6= 0 or ζ1 = 0 and ζ2 ≥ 0.

We end this section by discussing the tractability of the
optimizations (11) and (12). If Wq is a quadratic function (as
it is often the case in practice), α(s) = α0s, with α0 > 0,
and Γ is given by a sublevel set of a quadratic function (e.g.,
if it is the sublevel set a quadratic CLF Vq), then (11) and
(12) both have quadratic objective functions and quadratic
constraints, i.e., they are quadratically constrained quadratic
programs (QCQPs). Moreover, if Γ is the sublevel set of
a convex quadratic function, then (11) is a convex QCQP
(whereas in general, (12) is non-convex). If instead Γ is the
sublevel set of a piecewise linear function, both (11) and (12)
have affine constraints and therefore are quadratic programs
(QPs). Moreover, (11) is a convex QP. In either case, even
if the resulting QCQPs or QPs are non-convex, there exist
efficient heuristics [51], [52] to solve these programs. Finally,
Proposition IV.7 can be applied to settings where obstacles are
not polytopic by constructing outer approximations of them
using polytopes and considering the resulting union of convex
sets.

7

C. Compatibility Verification for Linear Systems and Ellip-
soidal Obstacles

In this section, we again consider linear dynamics (10), but
now assume obstacles are ellipsoidal, i.e., Ol = {x ∈ Rn :
r2
l > (x− cl)TRl(x− cl)}, for some positive definite matrix
Rl ∈ Rn×n, cl ∈ Rn, and rl > 0. In this case, we take
hl(x) = −r2

l + (x − cl)TRl(x − cl) (which is continuously
differentiable and therefore Nl = 1 for all l ∈ [M]) and
Vq(x) = (x− q)TP (x− q), for some positive definite matrix
P ∈ Rn×n. Then the following result follows from applying
Proposition IV.1 to the case when dynamics are linear and
obstacles are ellipsoidal.

Proposition IV.8. (Sufficient Condition for CLF-BNCBF
Compatibility for Linear Dynamics and Ellipsoidal Obsta-
cles): Let Γ ⊂ R, l ∈ [M], q ∈ F , αl > 0, and define

ζ1 := min
x∈Γ,y∈Rn,β∈R

∥∥BT y −BTP (x− q)
∥∥2

(13a)

s.t. β ≥ 0, hl(x) ≥ 0, y = −2βRl(x− cl). (13b)

If ζ1 6= 0, then Vq and hl are compatible in Γ∩F . Otherwise,
if ζ1 = 0, let

ζ2 := min
x∈Γ,y∈Rn,β∈R

Φ(x, y, β) (14a)

s.t. BT y = BTP (x− q), (14b)
β ≥ 0, hl(x) ≥ 0, y = −2βRl(x− cl), (14c)

with Φ(x, y, β) = −Wq(x)− (x− q)TPAx−βαlr2
l −αl(x−

cl)
T y

2 + yTAx. If ζ2 ≥ 0, then Vq and hl are compatible in
Γ ∩ F .

If Γ is the sublevel set of a quadratic function and Wq is
quadratic, both (13) and (14) are QCQPs and can therefore
be solved efficiently [51], [52]. Let us next further restrict our
attention to single-integrator dynamics, i.e.,

ẋ = u, (15)

and circular obstacles, i.e., Ol = {x ∈ Rn : ‖x− cl‖ <
rl} for some cl ∈ Rn and rl > 0. In this case, we take
hl(x) = ‖x− cl‖2−r2

l , Vq(x) = ‖x− q‖2, and Wq(x) = (x−
q)TQ(x − q), where Q ∈ Rn×n is a positive definite matrix.
In this case, the optimization problems in Proposition IV.1 can
be solved in closed-form.

Proposition IV.9. (Sufficient Condition for CLF-BNCBF
Compatibility for Single Integrator Dynamics and Circular
Obstacles): Let l ∈ [M], αl > 0, x0 ∈ Rn\{q}, q ∈ F ,
Γ := {x ∈ Rn : Vq(x) ≤ Vq(x0)}, Bl := ‖q − cl‖2Q−2αlr

2
l ,

β+ :=

√
B2
l + 4α2

l r
2
l (‖q − cl‖

2 − r2
l)−Bl

2αlr2
l

,

and suppose that one of the following holds:
• ‖x0 − q‖ − ‖cl − q‖ > 0 and ‖x0−q‖

‖x0−q‖−‖cl−q‖ > 1 +
‖cl−q‖
rl

;
• ‖x0 − q‖ − ‖cl − q‖ > 0, ‖x0−q‖

‖x0−q‖−‖cl−q‖ ≤ 1 + ‖cl−q‖
rl

and β+ ≥ 1 + ‖cl−q‖
rl

;
• ‖x0 − q‖ − ‖cl − q‖ ≤ 0.

Then, Vq and hl are compatible in Γ ∩ F .

Proof. We rely on Proposition IV.1. In the setting considered
here, (6) reads as

ζ1 := min
x∈Γ,β∈R

‖2β(x− cl)− 2(x− q)‖2 (16a)

s.t. β ≥ 0, (16b)

‖x− cl‖2 − r2
l ≥ 0. (16c)

It follows that ζ1 = 0 if and only if there exists x ∈ Γ and
β ∈ R\{1} (note that β = 1 and ζ1 = 0 are not possible
because q ∈ F) such that x = 1

β−1 (βcl − q), β ≥ 0 and
‖x− cl‖2 − r2

l ≥ 0. Equivalently, ζ1 = 0 if and only if there
exists β ∈ R\{1} such that β ≥ 0, |β − 1| ≤ ‖cl−q‖

rl
and

β(‖x0 − q‖ − ‖cl − q‖) ≥ ‖x0 − q‖. Note that since q ∈ F ,
‖cl − q‖ ≥ rl, and therefore the condition β ≥ 1 − ‖cl−q‖rl
trivially holds if β ≥ 0. Hence, ζ1 = 0 if and only if there
exists β ∈ R\{1} such that β ≥ 0, β ≤ 1 + ‖cl−q‖

rl
, and

β(‖x0 − q‖−‖cl − q‖) ≥ ‖x0 − q‖. We distinguish two cases:
(i) suppose that ‖x0 − q‖−‖cl − q‖ ≤ 0. Then, since x0 6= q,
it follows that β(‖x0 − q‖ − ‖cl − q‖) ≥ ‖x0 − q‖ can not
hold. Therefore, ζ1 6= 0 and Vq and hl are compatible in Γ; (ii)
suppose instead that ‖x0 − q‖ − ‖cl − q‖ > 0. Then, ζ1 = 0

if and only if ‖x0−q‖
‖x0−q‖−‖cl−q‖ ≤ 1 + ‖cl−q‖

rl
. Consequently, if

‖x0−q‖
‖x0−q‖−‖cl−q‖ > 1 + ‖cl−q‖

rl
, then Vq and hl are compatible

in Γ. Consider then the case when ‖x0−q‖
‖x0−q‖−‖cl−q‖ ≤ 1+ ‖cl−q‖rl

so that ζ1 = 0. Then, (7) reads

ζ2 := min
β∈R\{1}

1

(β − 1)2
Φ̂(β) (17a)

s.t.
‖x0 − q‖

‖x0 − q‖ − ‖cl − q‖
≤ β ≤ 1 +

‖cl − q‖
rl

, (17b)

where Φ̂(β) = β(αl ‖q − cl‖2 − αlr
2
l (1 − β)2 − β(q −

cl)
TQ(q − cl)). By computing the roots of Φ̂(β) = 0, it

follows that if β+ ≥ 1 + ‖cl−q‖
rl

, then Φ̂(β) ≥ 0 for
all β ∈ [0, β+], which implies that Φ̂(β) ≥ 0 for all
β ∈ [‖x0−q‖

‖x0−q‖−‖cl−q‖ , 1 + ‖cl−q‖
rl

], from which it follows that
ζ2 ≥ 0 and Vq and hl are compatible in Γ.

Proposition IV.9 provides a test for compatibility over
a Lyapunov level set that only requires checking a set of
algebraic conditions. Therefore, checking the compatibility of
Vq = ‖x− q‖2 and hl(x) = ‖x− cl‖2 − r2

l over a Lyapunov
sublevel set for a single integrator system can be done very
efficiently.

D. Compatibility Verification for Higher Relative Degree Sys-
tems

Here we extend the results of Section IV-A to a larger
class of system dynamics and barrier functions, specifically
High-Order Control Barrier Functions (HOCBFs) [53]. Let
h : Rn → R be a continuously differentiable function defining
a safe set of the form (3). Consider the situation where h has
to be differentiated m̄ ∈ Z>0 times along the dynamics (1)
until the control u appears explicitly (this is referred to as m
being the relative degree of h under system (1), cf. [54]).

8

This means that, in order to ensure that the value of
h remains positive at all times (i.e., C is positively in-
variant), we need to reason with its higher-order deriva-
tives. To do so, given differentiable extended class K∞
functions α(1), α(2), . . . , α(m̄−1), define a series of functions
φ0, . . . , φm̄−1 : Rn → R as follows: φ0 = h and

φi(x) = Lfφi−1(x) + α(i)(φi−1(x)), i ∈ {1, . . . , m̄− 1}.

We further define sets C1, . . . , Cm̄ as C1 = C and

Ci = {x ∈ Rn : φi−1(x) ≥ 0}, i ∈ {2, . . . , m̄}.

The function h is a high-order control barrier function
(HOCBF) of C if one can find differentiable, extended class
K∞ functions α(1), α(2), . . . , α(m) such that, for all x ∈
C ∩ C2 ∩ . . . ∩ Cm̄, there exists u ∈ Rm satisfying

Lfφm̄−1(x) + Lgφm̄−1(x)u+ α(m̄)(φm̄−1(x)) ≥ 0. (18)

If m̄ = 1, this definition corresponds to the notion of CBF.
According to [53, Theorem 5], any locally Lipschitz controller
that satisfies (18) at each x ∈ C ∩ C2 ∩ . . . ∩ Cm̄ renders the
set C ∩ C2 ∩ . . . ∩ Cm̄ positively invariant for system (1).

We next give an analogue of Definition II.4 for HOCBFs.

Definition IV.10. (Compatibility of CLF-HOCBF pair): Let
D ⊂ Rn be open, C ⊂ D be closed, V a CLF on D and
h a HOCBF of C. Then, V and h are compatible at x ∈
C∩C2∩. . .∩Cm̄ if there exists u ∈ Rm satisfying (2) and (18)
simultaneously. We refer to both functions as compatible in a
set D̃ if they are compatible at every point in D̃.

The following result is an analogue of Proposition IV.1 for
the case when h is a HOCBF. Its proof follows an analogous
argument and we omit it for space reasons.

Proposition IV.11. (Characterization of CLF-HOCBF Com-
patibility): Given q ∈ F , let Vq : Rn → R be a CLF of (1)
with respect to q. Let h be a HOCBF of C with relative degree
m̄ ∈ Z>0. Let Wq : Rn → R be a positive definite function
with respect to q and α(1), α(2), . . . , α(m̄) be differentiable
extended class K∞ functions. For Γ ⊂ R, let

ζ1 = min
x∈Γ,β∈R

‖βLgφm̄−1(x)− LgVq(x)‖2 , (19a)

s.t. β ≥ 0, φi(x) ≥ 0, i ∈ [m̄− 1]. (19b)

If ζ1 6= 0, then Vq and h are compatible in Γ∩C∩C2∩. . . Cm̄.
Otherwise, if ζ1 = 0, let

ζ2 = min
x∈Γ,β∈R

Φ̃(x, β) (20a)

s.t. β ≥ 0, φi(x) ≥ 0, i ∈ [m̄− 1], (20b)

where Φ̃(x, β) = −Wq(x) − LfVq(x) + β(Lfφm̄−1(x) +
α(m̄)(φm̄−1(x))). If ζ2 ≥ 0, then Vq and h are compatible in
Γ∩C ∩C2∩ . . . Cm̄. Conversely, if Vq and h are compatible in
Γ∩C ∩C2∩ . . . Cm, then there exists a set of differentiable ex-
tended class K∞ functions α(1), α(2), . . . , α(m̄) and a positive
definite function Wq with respect to q such that either ζ1 6= 0
or ζ1 = 0 and ζ2 ≥ 0.

To conclude this section, we consider the case of double-
integrator dynamics and circular obstacles. The double-
integrator dynamics are given by(

ẋ
v̇

)
=

(
0k Ik
0k 0k

)(
x
v

)
+

(
0k
Ik

)
u, (21)

with k ∈ Z>0 such that n = 2k, states x ∈ Rk and v ∈
Rk, and input u ∈ Rk. As pointed out in [55], only states
of the form (xf , 0k) ∈ Rn are stabilizable for (21), and for
any xf ∈ Rk, if we let q = (xf , 0n), then Vq : Rn → R
defined as Vq(x, v) = ‖x− xf‖2 + ‖v‖2 + (x − xf)T v is a
CLF with respect to q. Next, consider h : Rn → R given by
h(x, v) = ‖x− xc‖2 − r2, for some xc ∈ Rk and r > 0. The
following result shows that for this choice of V and h, (19)
and (20) take a tractable form.

Corollary IV.12. (CLF-HOCBF Compatibility for Circular
Obstacles and Double Integrator): Consider the double in-
tegrator dynamics (21). Let q = (xf , 0k) ∈ Rn, and let
Vq(x, v) = ‖x− xf‖2 + ‖v‖2 + (x − xf)T v be a CLF with
respect to q, Wq : Rn → R a positive definite function with
respect to q, and h(x, v) = ‖x− xc‖2−r2 for some xc ∈ Rk,
r > 0 a HOCBF. Let α1 > 0, α2 > 0, and φ0 : Rn → R,
φ1 : Rn → R defined as:

φ0(x, v) = h(x),

φ1(x, v) = 2(x− xc)T v + α1(‖x− xc‖2 − r2),

and C1 = {(x, v) ∈ R2n : φ1(x, v) ≥ 0}. For Γ ⊂ R, let

ζ̂1 = min
x∈Γ,β∈R,x̃∈Rk

‖2x̃− 2v − (x− xf)‖2 , (22a)

s.t. β ≥ 0, φi(x) ≥ 0, i ∈ {0, 1}, (22b)
β(x− xc)− x̃ ≤ 0, x̃− β(x− xc) ≤ 0. (22c)

If ζ̂1 6= 0, then Vq and h are compatible in Γ ∩ C ∩ C1.
Otherwise, if ζ̂1 = 0, let

ζ̂2 = min
(x,v)∈Γ,β∈R,
x̃∈Rk,ṽ∈Rk

Φ̂(x, v, x̃, ṽ) (23a)

s.t. β ≥ 0, φi(x) ≥ 0, i ∈ {0, 1}, (23b)
2x̃− 2v + x− xf ≤ 0, (23c)
− 2x̃+ 2v − (x− xf) ≤ 0, (23d)
β(x− xc)− x̃ ≤ 0, x̃− β(x− xc) ≤ 0,

(23e)
βv − ṽ ≤ 0, −βv + ṽ ≤ 0, (23f)

where Φ̂(x, v, x̃, ṽ) = 2ṽT v+α1x̃
T v+2α2x̃

T v+α2α1x̃
T (x−

xc)− α1α2r
2β − 2(x− xf)T v− ‖v‖2 −Wq(x, v). If ζ̂2 ≥ 0,

then Vq and h are compatible in Γ ∩ C ∩ C1.

Proof. The result follows from Proposition IV.11 and by
introducing the new variables x̃ = β(x− xc), ṽ = βv.

Note that (22) is a QCQP, and if Wq is quadratic, (23) is
also a QCQP and can therefore be solved efficiently [52].

9

V. C-CLF-CBF-RRT

In this section, we introduce a novel motion planning
algorithm, termed Compatible-CLF-CBF-RRT
(C-CLF-CBF-RRT), that leverages the compatibility
results from Section IV to generate collision-free paths that
can be tracked using CLF-CBF based controllers.

A. CLF-CBF Compatible Paths

We start by defining formally the type of paths that we
seek to find using our motion planning algorithm. Intuitively,
a path is CLF-CBF compatible if the CLF-CBF controller (5)
successfully connects pairs of consecutive waypoints in the
path.

Definition V.1. (CLF-CBF Compatible Path): Let A =
{xi}Na

i=1 ⊂ F be a sequence of points, with Na ∈ Z>0,
x1 = xinit and xNa

∈ Xgoal := B(xgoal, δgoal), where
xgoal ∈ Rn and δgoal > 0. A is a CLF-CBF compatible path
if for each i ∈ [Na − 1],

(i) there exists a CLF Vi : Rn → R≥0 with respect to xi+1

in an open set containing Γi := {x ∈ Rn : Vi(x) ≤
Vi(xi)} for system (1);

(ii) there exist extended class K∞ functions {αi,l : R →
R}l∈[M] and positive definite functions Wi : Rn → R≥0

with respect to xi+1 such that the optimization problem

min
u∈Rm

1

2
‖u‖2 (24)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −αi,l(hj,l(x)),

∀j ∈ Il(x), l ∈ [M],

LfVi(x) + LgVi(x)u+Wi(x) ≤ 0.

is feasible for all x ∈ Γi ∩ F .

For each i ∈ [Na− 1], let u∗i : Γi ∩F → Rm be a function
mapping each x ∈ Γi ∩ F to the solution of (24). Under the
assumption that u∗i is locally Lipschitz, cf. Remark IV.5, the
feasibility of (24) ensures that the solution of the closed-loop
system ẋ = f(x)+g(x)u∗i (x) with initial condition xi (which
we denote as x(·;xi)) is collision-free and asymptotically
converges to xi+1. Indeed,

(i) the satisfaction of the CLF constraint LfVi(x) +
LgVi(x)u + Wi(x) ≤ 0 at time t ≥ 0 ensures that
d
dtV (x(t;xi)) < 0, and x(t;xi) asymptotically con-
verges to xi+1;

(ii) the satisfaction of the BNCBF constraint Lfhj,l(x) +
Lghj,l(x)u ≥ −αi,l(hj,l(x)) for all j ∈ Il(x), l ∈
[M] at time t ≥ 0 ensures that d

dthj,l(x(t;xi)) ≥
−αl(hj,l(x(t;xi))) for all j ∈ Il(x), l ∈ [M], and
x(t;xi) is collision-free.

Because xi ∈ Γi ∩ F , this ensures that as long as the CLF
and BNCBF constraints are satisfied, x(t;xi) ∈ Γi ∩ F .
In turn, since the definition of CLF-CBF compatible path
ensures that (24) is feasible for all x ∈ Γi ∩ F , this implies
that the controller u∗i (x(t;xi)) is well-defined for all t ≥ 0,
and x(·;xi) is collision-free and asymptotically converges to
xi+1. Therefore, CLF-CBF compatible paths guarantee that the
controller obtained by solving (24) for each waypoint steers

an agent obeying the dynamics (1) towards the next waypoint
while remaining collision-free. Even though the convergence
to the waypoint xi+1 is only achieved in infinite time, one
can execute the controller u∗i until the agent is sufficiently
close to xi+1 and then switch to the next controller u∗i+1.
We elaborate more on this point in Section VI, where we
identify conditions on the CLF-CBF compatible path under
which the controllers {u∗i }

Na−1
i=1 can steer the agent from a

neighborhood of each waypoint to a neighborhood of the next
one, hence ensuring that (24) is feasible at all times if we
switch to the next controller u∗i+1 when the agent is sufficiently
close to xi+1.

Remark V.2. (Controllability Requirements for CLF-CBF
Compatible Paths): Definition V.1 requires each of the points
in the path A to be asymptotically stabilizable. This condition
imposes some structural properties on the class of systems that
admit such paths, which we examine next:
Same number of inputs and state variables: In the case

when m = n and g(x) is invertible for all x ∈ Rn, CLF-
CBF compatible paths exist because any point q ∈ Rn
is asymptotically stabilizable. Indeed, in this setting the
function Vq : Rn → R defined by Vq(x) = 1

2 ‖x− q‖
2 is

a CLF with respect to q;
Fewer inputs than state variables: In the case when m <

n, the set of stabilizable points is limited. For instance,
for linear systems with f(x) = Ax and g(x) = B, with
A ∈ Rn×n and B ∈ Rn×m, only the points q ∈ Rn such
that Aq ∈ Im(B) are stabilizable. This is not a major
restriction in a lot of cases of interest. For example, for
a double-integrator system, where m = k and n = 2k,
with k ∈ Z>0, and

A =

(
0k Ik
0k 0k

)
, B =

(
0k
Ik

)
,

this condition restricts the set of stabilizable points to
those that have a zero velocity, but arbitrary position, as
pointed out in Section IV-D. In general, if m < n, there
often exists a smooth change of coordinates ψ : Rn →
Rm that transforms the dynamics into a single integrator
in Rm. In [56, Section IV.A] and [57], for instance, this is
achieved for unicycle dynamics, by taking the transforma-
tion ψ(x1, x2, θ) = [x1 + l0 cos(θ), x2 + l0 sin(θ)] (where
l0 > 0 is a positive design parameter). Then, for any
q ∈ Im(ψ), the set Mq = {x ∈ Rn : ψ(x) = q} can be
asymptotically stabilized. Therefore, if m < n but such
a transformation ψ exists, Definition V.1 can be adapted
so that the points in A are in sets of the form Mq . •

B. Algorithm Description

In this section we introduce the C-CLF-CBF-RRT algo-
rithm, which builds upon RRT, cf. Section II-B, and generates
CLF-CBF compatible paths. Algorithm 2 presents the pseu-
docode description.

The input for C-CLF-CBF-RRT consists of a compact,
convex set R ⊂ Rn, an initial configuration xinit ∈ Rn, a
goal region Xgoal ⊂ Rn, the number of iterations k ∈ Z>0

of the algorithm, the number of iterations τ ∈ Z>0 for the

10

Algorithm 2 C-CLF-CBF-RRT

1: Parameters: R, xinit, Xgoal, k, τ , η, {hl, αl}Ml=1

2: T .init(xinit)
3: for i ∈ [1, . . . , k] do
4: xrand ← RANDOM STATE()
5: xnear ← NEAREST NEIGHBOR(xrand, T)
6: xnew ← NEW STATE(xrand, xnear, η)
7: if not FREE SPACE(xnew) then
8: skip to next iteration
9: end if

10: V,W ← FIND CLF(xnew)
11: if COMPATIBILITY(xnear, xnew, τ, {hl, αl}Ml=1,V ,W)

then
12: T .add vertex(xnew)
13: T .add edge(xnear, xnew)
14: if xnew ∈ Xgoal then
15: return T
16: end if
17: end if
18: end for
19: return T

compatibility check, a set of extended class K∞ functions
{αl}Ml=1, the steering parameter η > 0, and a set of obstacles
{Ol}Ml=1 defined by functions hl : Rn → R for l ∈ [M]. At
the beginning, a tree T is initialized with a single node at xinit
and no edges.

The C-CLF-CBF-RRT algorithm operates similarly to the
GEOM-RRT algorithm described in Section II-B.

At each iteration, steps 4:-6: are the same as in
Algorithm 1. In general, RANDOM STATE samples
R uniformly, but if we know that only a subset
of the points in R is stabilizable, one can choose
to sample uniformly only over such points. The
functions NEAREST NEIGHBOR and NEW STATE
operate identically to how they do in GEOM-RRT.
We note that, since R is convex, xnew is guaranteed
to belong to it. Next, the function FREE SPACE
checks whether xnew ∈ F . If xnew /∈ F , it skips
to the next iteration. Otherwise, FIND CLF finds a
CLF V and associated positive definite function W
with respect to xnew. Then, the COMPATIBILITY
function checks whether there exists a CLF-CBF
based controller that steers the system from xnear
to xnew. If the COMPATIBILITY function returns
a value of True, then xnew is added as a vertex
to T and is connected by an edge from xnear. If
xnew ∈ Xgoal, there exists a single path in T from
xinit to xnew.

In Section V-C, we discuss in detail the definition of the
function COMPATIBILITY. The function FIND CLF aims
to find a control Lyapunov function, which is a challenging
problem for general control systems. Beyond what we noted
in Remark V.2, one can use for this a variety of tools, such
as sum-of-squares techniques [58], [59], neural networks [60],
[61], or the learner-falsifier framework [62].

Remark V.3. (Sampling in Systems with Fewer Inputs than
State Variables): A requirement for step 7: of Algorithm 2
to return a value of True is that xnew is stabilizable. Since
this point is obtained through random sampling, in general
this might not be the case. However, if we know the set of
points that are stabilizable (for instance, an m-dimensional
manifold M in the case of systems with m < n controls, cf.
Remark V.2), then we can project xnew onto such set. •

C. The COMPATIBILITY function
Here we define the operation of the COMPATIBILITY

function. Given the CLF V and the positive definite function
W with respect to xnew found by FIND CLF, it checks
whether the optimization problem

min
u∈Rm

1

2
‖u‖2 , (25)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −αl(hj,l(x)),

∀j ∈ Il(x), l ∈ [M],

LfV (x) + LgV (x)u+W (x) ≤ 0.

is feasible for all x ∈ Θ∩F , where Θ = {x ∈ Rn : V (x) ≤
V (xnear)} and αl is the class K∞ function associated with hl.

1. Find obstacles that intersect domain of interest: To check
whether (25) is feasible, we first find the obstacles that inter-
sect Θ, i.e., we find l ∈ [M] such that Cl(Ol) ∩Θ 6= ∅. This
can be done by solving the following optimization problem
for every l ∈ [M]:

min
x∈Rn

V (x) (26)

s.t. hi,l(x) ≤ 0, ∀i ∈ [Nl].

Then, Cl(Ol)∩Θ 6= ∅ iff the optimal value of (26) is smaller
than or equal to V (xnear). Problem (26) is tractable under the
settings considered in Section IV, where V is quadratic and
the constraints are affine (in which case (26) is a quadratic
program) or ellipsoidal (in which case (26) is a QCQP).

2. Reduce number of constraints and check for compatibil-
ity: Next, we check the compatibility of the CLF with each
of the CBFs associated with the obstacles in L := {l ∈
[M] : Θ∩Cl(Ol) 6= ∅} (Lemma A.1 ensures this step retains
consistency). Then, COMPATIBILITY uses Proposition IV.1
for each l ∈ L. First, for each l ∈ L, it solves the optimization
problem (6) with Γ = Θ and obtains the value ζ1,l. If ζ1,l = 0,
it solves (7) with Γ = Θ and obtains the value ζ2,l. If for all
l ∈ L, the obtained values of ζ1,l and ζ2,l are such that ζ1,l 6= 0
or ζ1,l = 0 and ζ2,l ≥ 0, then V and hl are compatible in Θ∩F
for all l ∈ L and COMPATIBILITY returns True.

3. If unsuccessful, increase feasibility set and recheck: Oth-
erwise, it updates the set of extended class K∞ functions and
the function W in a way that increases the feasible set of (25),
and performs again the same check about its feasibility. In
every subsequent iteration, we use a new W obtained by
multiplying the previous one by a constant factor σ ∈ (0, 1),
and use linear extended class K∞ functions αl(s) = α0,ls with
the parameter α0,l being multiplied by a constant factor σ̄ > 1
at every iteration. With this choice, the objective function Φ
of (7) does not decrease at any point, which means that the
value of ζ1 remains the same but the condition ζ2 ≥ 0 becomes

11

easier to satisfy, which makes it easier for COMPATIBILITY
to return a value of True. If after τ of those updates the
function still has not returned a value of True, it returns
a value of False. We can also employ other heuristics to
make it even easier for COMPATIBILITY to return a value
of True. For example, instead of using constant factors σ, σ̄,
one can increase such factors at every iteration.

Remark V.4. (No Loss of Generality in Assuming Linear
Class K∞ Function): Since the set Θ is compact (because
V is proper), for each l ∈ [M] and j ∈ [Nl], the function
hj,l is bounded in Θ, i.e., there exists Mj,l > 0 such that
hj,l(x) < Mj,l for all x ∈ Θ. Now suppose that Vq and hl are
compatible in Θ, i.e., there exists a controller ucom : Rn → Rm
such that

Lfhj,l(x) + Lghj,l(x)ucom(x) + αl(hj,l(x)) ≥ 0, ∀j ∈ Il(x),

LfVq(x) + LgVq(x)ucom(x) +W (x) ≤ 0,

for all x ∈ Θ. Note that there exists Mcom > 0 sufficiently
large such that Mcomz > αl(z) for all z ∈ [0,Mj,l]. Using
that hj,l(x) < Mj,l for all x ∈ Θ, we deduce

Lfhj,l(x) + Lghj,l(x)ucom(x) +Mcomhj,l(x) ≥ 0, ∀j ∈ Il(x),

LfVq(x) + LgVq(x)ucom(x) +W (x) ≤ 0,

for all x ∈ Θ. Therefore, Vq and hl are also compatible in Θ
using a linear class K∞ function α(z) = Mcompz. Therefore,
without loss of generality, we can assume that the class K∞
function used in the COMPATIBILITY function is linear. •

VI. ANALYSIS OF C-CLF-CBF-RRT

In this section we establish the probabilistic completeness
of C-CLF-CBF-RRT. We do this by first showing that if
C-CLF-CBF-RRT returns a tree with a vertex in Xgoal, then
this tree contains a CLF-CBF compatible path; and then
showing that, under suitable conditions, C-CLF-CBF-RRT in
fact returns a tree with a vertex in Xgoal with high probability.

Proposition VI.1. (C-CLF-CBF-RRT and CLF-CBF Com-
patible Path): Suppose that C-CLF-CBF-RRT returns a tree
T that contains a vertex qgoal ∈ Xgoal. Then, the single path
in T from xinit to qgoal is CLF-CBF compatible.

Proof. Let Na ∈ Z>0 and A = {xi}Na
i=1 be the path obtained

from C-CLF-CBF-RRT, with x1 = xinit and xNa
∈ Xgoal.

First, FREE SPACE ensures that xi ∈ F for all i ∈ [Na].
Moreover, FIND CLF ensures that, for all i ∈ [Na−1], there
exists a CLF Vi with respect to xi+1, and COMPATIBILITY
ensures that there exists a set of class K∞ functions {αi,l}Ml=1

and a positive definite function Wi with respect to xi+1 such
that the optimization problem (24) is feasible for all points in
the set {x ∈ Rn : Vi(x) ≤ Vi(xi)} ∩ F . This ensures that A
is CLF-CBF compatible.

We next show that, under some extra assumptions,
C-CLF-CBF-RRT returns a tree with a vertex in Xgoal with
probability one as the number of iterations k goes to infinity.
In doing so, our next result is critical as it provides conditions
under which there exist neighborhoods around a CLF-CBF

compatible path for which points of two consecutive neigh-
borhoods can be connected with a CLF-CBF-based controller.

Lemma VI.2. (Compatibility in Neighboring Vertices): Let
A = {xi}Na

i=1, Na ∈ Z>0, be a CLF-CBF compatible path
such that there exists δclear > 0 with B(xi, δclear) ⊂ F for all
i ∈ {2, . . . , Na}. Let N1 = {xinit}. For each i ∈ {2, . . . , Na},
assume that there exist sets Ni, with xi ∈ Ni, and Γ̂i, with
Γi ⊂ Γ̂i (and Γi defined as in Definition V.1), satisfying the
following properties:

(i) for each y ∈ Ni, there exists a CLF Vy : Γ̂i → R
with respect to y in Γ̂i (with associated positive definite
function Wy) and a bounded controller ûy : Γ̂i → Rm
satisfying the corresponding CLF condition in Γ̂i;

(ii) there exists a bounded controller u∗i : Γ̂i ∩ F → Rm
that satisfies the constraints in (24) for all points in Γ̂i
and, for each y ∈ Ni,

|(∇Vy(x)−∇Vi(x))T (f(x)+g(x)u∗i (x))|
< Wi(x), (27)

for all x ∈ Z = {z ∈ F : ∃l ∈ [M] s.t. d(z,Ol) ≤
δclear

2 };
(iii) for each y2 ∈ Ni and y1 ∈ Ni−1, Γy1,y2 := {x ∈ Rn :

Vy2(x) ≤ Vy2(y1)} ⊂ Γ̂i;
(iv) whenever xnew ∈ Ni, global solutions to the optimization

problems (6) and (7) in COMPATIBILITY are found.
Then, for each i ∈ {2, . . . , Na}, y2 ∈ Ni, and y1 ∈
Ni−1, there exists a set of extended class K∞ func-
tions {ᾱi,l}Ml=1 and σ̄ > 0 (both dependent on y1,
y2) such that, by taking W σ̄

y2(x) = σ̄Wy2(x), it holds
that COMPATIBILITY(y1, y2, 1, {hl, ᾱi,l}Ml=1, Vy2 ,W

σ̄
y2) =

True.

Proof. Given i ∈ {2, . . . , Na}, y2 ∈ Ni, and y1 ∈ Ni−1, our
goal is to show that there exists a set of extended class K∞
functions {ᾱi,l}Ml=1 and a sufficiently small σ̄ > 0 such that

min
u∈Rm

1

2
‖u‖2 , (28)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −ᾱi,l(hj,l(x)),

∀j ∈ Il(x), l ∈ [M],

∇Vy2(x)T (f(x) + g(x)u) + σ̄Wy2(x) ≤ 0,

is feasible for all x ∈ Γy1,y2 ∩ F . Figure 1 provides a visual
aid for the argument that follows. The set Γy1,y2 is depicted
in red, the sets Ni in blue, Z in light purple, and the obstacles
{Ol}Ml=1 in green. For convenience, we let Ty1,y2 = Γy1,y2∩Z
(depicted in dark purple).

Feasibility on (Γy1,y2\Ty1,y2)∩F : Since Ty1,y2 contains all
points that are closer than δclear

2 from the boundary, there exists
h0 > 0 such that hj,l(x) > h0 for all x ∈ (Γy1,y2\Ty1,y2)∩F ,
l ∈ [M] and j ∈ Il(x). Therefore, by taking α∗i,l > 0, with

α∗i,l >

sup
x∈(Γy1,y2\Ty1,y2)∩F,

j∈Il(x)

|Lfhj,l(x) + Lghj,l(x)ûy2(x)|

h0
,

for each l ∈ [M] (which exists because ûy2 is bounded on Γ̂i
by (i)), it holds that

Lfhj,l(x) + Lghj,l(x)ûy2(x) + α∗i,lhj,l(x) ≥ 0,

12

∀j ∈ Il(x), l ∈ [M],

∇Vy2(x)T (f(x) + g(x)ûy2(x)) + σWy2(x) ≤ 0,

for all x ∈ (Γy1,y2\Ty1,y2)∩F and σ ∈ (0, 1), where we have
used that ûy2 satisfies the CLF condition for Vy2 by (i).

Feasibility on Ty1,y2 : From (ii), there exists a bounded
controller u∗i satisfying the constraints in (24) for all x ∈ Γ̂i.
Since Γy1,y2 ⊂ Γ̂i, cf. (iii), u∗i satisfies the constraints in (24)
for all x ∈ Γy1,y2 . Moreover, since (27) holds for all x ∈ Z
(note that this is only possible because B(xi, δclear) ⊂ F and
therefore xi /∈ Z , which means that the right-hand side of (27)
is strictly positive), by (ii) it follows that

∇Vy2(x)T (f(x) + g(x)u∗i (x)) < 0,

for all x ∈ Ty1,y2 . Since Z is compact, this implies that there
exists σ̄ ∈ (0, 1) sufficiently small such that

Lfhj,l(x) + Lghj,l(x)u∗i (x) + αi,l(hj,l(x)) ≥ 0,

∀j ∈ Il(x), l ∈ [M],

∇Vy2(x)T (f(x) + g(x)u∗i (x)) + σ̄Wy2(x) ≤ 0.

for all x ∈ Ty1,y2 .
Hence, by taking ᾱi,l as an extended class K∞ func-

tion such that ᾱi,l(s) > max{αi,l(s), α∗i,ls} for all
s ≥ 0, and σ̄ ∈ (0, 1) sufficiently small as described
above, (28) is feasible for all x ∈ Γy1,y2 ∩ F . Since
COMPATIBILITY finds the global solutions of the op-
timization problems (6) and (7), cf. (iv), it follows that
COMPATIBILITY(y1, y2, 1, {hl, ᾱi,l}Ml=1, Vy2 ,W

σ̄
y2) = True

(note that since (28) includes CBF constraints for l ∈ [M],
this argument is valid independently of the set L found by
solving (26)).

Fig. 1: Visual aid for the arguments described in the proof of Lemma VI.2.

Remark VI.3. (Verification of Assumptions of Lemma VI.2
for Specific Classes of Systems): For systems with the same
number of inputs as state variables, the set Ni in Lemma VI.2
can be taken as a ball centered at the waypoint xi. As men-
tioned in Remark V.2, for such systems, Vy(x) = 1

2 ‖x− y‖
2

is a CLF for any y ∈ Rn. Moreover, we can take Wy(x) =
‖x− y‖2 and the controller û : Rn → Rn defined as
û(x) = − (x−y2)T f(x)+‖x−y2‖2

‖g(x)T (x−y2)‖2 g(x)T (x − y2) is such that

(x−y2)T (f(x)+g(x)û(x))+‖x− y2‖2 ≤ 0 for all x ∈ Γy1,y2
and is bounded, since

‖û(x)‖ ≤ ‖x− y2‖ (‖f(x)‖+ ‖x− y2‖)
‖g(x)T (x− y2)‖∥∥g(x)−1g(x)(x− y2)

∥∥ (‖f(x)‖+ ‖x− y2‖)
‖g(x)T (x− y2)‖

≤
∥∥g(x)−1

∥∥ ‖x− y2‖ .

Given that an explicit expression for the CLF is available, the
conditions (ii), (iii) in Lemma VI.2 can be verified directly
and one can choose the radius of the balls defining Ni to
satisfy them. Furthermore, Propositions IV.7 and IV.9 provide
two settings where condition (iv) holds.

A similar argument can be made for the double integrator in
dimension 2k ∈ Z>0. As mentioned in Remark V.2, in that case
only the points of the form (xf , 0k) ∈ R2k are stabilizable.
Hence, the sets Ni in Lemma VI.2 can be taken in the form
Ni := {(x, 0k) ∈ R2k : ‖x− xf‖ < νi} for some νi > 0.
Furthermore, one can use the explicit expression of the CLF
provided in Section IV-D and choose the parameters νi in
order to verify the rest of the assumptions in Lemma VI.2. •

In general, if the neighborhoodNi around xi in Lemma VI.2
is sufficiently small and ∇Vy is continuous in y (with the
assumption that Vxi

= Vi), the left-hand side of (27) can
be made sufficiently small so that the inequality holds. Note
that Assumptions (i), (iii), and (iv) are not restrictive and
hold in several cases of interest, as outlined in Remark VI.3.
Overall, the assumptions in Lemma VI.2 ensure that there
exist neighborhoods around every waypoint of a CLF-CBF
compatible path such that the controller obtained as the
solution of (24) can connect a point from each neighborhood
to any point in the neighborhood of the next waypoint. We next
leverage this property to show the probabilistic completeness
of C-CLF-CBF-RRT.

Proposition VI.4. (Probabilistic Completeness of
C-CLF-CBF-RRT): Suppose that there exists a CLF-
CBF compatible path A = {xi}Na

i=1, Na ∈ Z>0, and suppose
that all the assumptions in Lemma VI.2 regarding A hold.
Further suppose that

(i) there exists a positive probabiliy pi that
RANDOM STATE returns a point from Ni;

(ii) for each y ∈ Ni, FIND CLF returns Vy and Wy (as
defined in item (i) of Lemma VI.2);

(iii) the extended class K∞ functions {αi,l}i∈[Na],l∈[M]

in (24) are upper bounded by linear extended class K∞
functions, i.e., there exist α̂i,l > 0 for i ∈ [Na] and
l ∈ [M] such that αi,l(s) ≤ α̂i,ls for all s ≥ 0;

(iv) the steering parameter η in NEW STATE is such that
η > max

i∈[Na−1]
max

y2∈Ni+1,y1∈Ni

‖y2 − y1‖.

Then, there exists τ∗ ∈ Z>0 such that if τ > τ∗, the
probability of C-CLF-CBF-RRT (executed with parameters
τ , η, and any set of extended class K∞ functions {αl}l∈[M])

13

returning a tree without a vertex in Xgoal tends to zero as the
number of iterations k goes to infinity.

Proof. The proof follows a similar reasoning to [48, Theorem
1] that proves probabilistic completeness for GEOM-RRT.
Let i ∈ [Na − 1]. First, we show that if Ni contains a
vertex xnear from the tree T in C-CLF-CBF-RRT, then
with probability pi > 0 in the next iteration a vertex will be
added from Ni+1. To see this, note that by assumption there
exists a probability pi > 0 that the function RANDOM STATE
returns a point xrand from Ni+1. Given (iv), the distance
between xnear ∈ Ni and xrand ∈ Ni+1 is less than η,
and therefore xnew = xrand. Now, Lemma VI.2 ensures
that there exists a set of extended class K∞ functions
{ᾱi,l}Ml=1, a CLF Vxrand with respect to xrand and a positive
definite function W σ̄

xrand
with respect to xrand such that

COMPATIBILITY(xnear, xrand, τ, {hl, ᾱi,l}Ml=1, Vxrand ,W
σ̄
xrand

)
returns True. Moreover, since the functions {αi,l}Ml=1

are upper bounded by linear extended class K∞ functions
with slopes {α̂i,l}Ml=1, by performing the updates in the
extended class K∞ functions described in Section V-C.3,
it follows that there exists τ∗ sufficiently large such that if
τ > τ∗, the updated linear extended class K∞ functions
used in COMPATIBILITY have slopes larger than {α̂i,l}Ml=1

respectively and the coefficient multiplying Wxrand is smaller
than σ̄, which makes the COMPATIBILITY function
return True. This means that xrand is added to T with the
corresponding edge from xnear to xrand, as stated.

Next, in order for C-CLF-CBF-RRT to reach Xgoal from
xinit, the algorithm needs to successively select points from
Ni+1 as described previously for i ∈ [Na−1]. For k iterations
of C-CLF-CBF-RRT, this stochastic process can be described
as k Bernouilli trials [63, Definition 2.5] with success proba-
bilities {pi}Na−1

i=1 . The algorithm reaches Xgoal from xinit after
Na − 1 successful outcomes. Let p := min

i∈[Na−1]
pi. Using the

same argument as in [48, Theorem 1], the probability that this
stochastic process does not have Na − 1 successful outcomes
after k iterations is smaller than (Na−1)!

(Na−2)!k
Na−1e−pk. This

means that the probability of C-CLF-CBF-RRT returning a
tree without a vertex in Xgoal tends to zero as the number of
iterations k goes to infinity.

Remark VI.5. (Verification of Assumptions of Proposi-
tion VI.4): As mentioned in Remark VI.3, for systems with
the same number of inputs as state variables, the set Ni
in Lemma VI.2 can be taken as a ball centered at the
waypoint xi. If RANDOM STATE samples R uniformly, it
returns a point in such ball with probability equal to its relative
volume inR. Furthermore, in this case FIND CLF can simply
return Vy(x) = 1

2 ‖x− y‖
2 and Wy(x) = ‖x− y‖2 for any

y ∈ Ni. For the double integrator in dimension 2k ∈ Z>0, as
mentioned in Remark VI.3, the sets Ni in Lemma VI.2 can be
taken in the formNi := {(x, 0k) ∈ R2k : ‖x− xf‖ < νi} for
some νi > 0 and if RANDOM STATE samples uniformly points
of the form (xf , 0k) ∈ R2k, then (i) in Proposition VI.4 holds.
Furthermore, FIND CLF can return the explicit expression
of the CLF provided in [55, Section V.A]. We note also that
Assumption (iii) is not restrictive, and Assumption (iv) holds
by taking the parameter η sufficiently large. •

Remark VI.6. (Computational Complexity of
C-CLF-CBF-RRT): The computational complexity of
C-CLF-CBF-RRT is the same as GEOM-RRT except for
the added complexity of the COMPATIBILITY function. In
general, the optimization problems (6), (7), and (26) required
by COMPATIBILITY can be non-convex, which makes
them not computationally tractable. However, in the setting
considered in Proposition IV.7, the worst-case complexity of
COMPATIBILITY is that of solving τ QCQPs, for which
efficient heuristics exist [52]. In the setting considered in
Proposition IV.9, (6), (7), and (26) can be solved in closed
form, which means that C-CLF-CBF-RRT has the same
computational complexity as GEOM-RRT. •

Remark VI.7. (C-CLF-CBF-RRT for Differentially Flat Sys-
tems): Here we explain how C-CLF-CBF-RRT is applicable
to differentially flat systems. Differentially flat systems [64]
are control systems for which the states and inputs can be
written as algebraic functions of carefully selected flat outputs
and their derivatives. Many robotic systems of interest, such as
the unicycle [65] or the quadrotor [66] are differentially flat.
This property facilitates the generation of smooth trajectories.
Differentially flat systems are equivalent to dynamic feedback
linearizable systems [67] (i.e., systems that can be feedback
linearized after adding an appropriate number of dynamic
inputs). This means that differentially flat systems can be
transformed into linear systems after an appropriate change
of coordinates and control inputs (the same also applies to
static feedback linearizable systems, for which no dynamic
inputs need to be added). Furthermore, by constructing an
outer approximation of the obstacles using polytopes, and
expressing it as a union of convex polytopes, the results in
Proposition IV.7 apply, and the optimization problems (6) and
(7) are easier to solve, cf. Section IV-B. •

Remark VI.8. (Controller Execution): Given a CLF-CBF
compatible path A, executing the controller (24) has the
agent converge from one waypoint to the next asymptotically.
However, under the assumptions of Proposition VI.4, there
exist neighborhoods around the waypoints of A such that any
two points of two consecutive neighborhoods can be connected
with a CLF-CBF controller (possibly, with adjusted CLF, and
extended class K∞ functions, cf. Lemma VI.2). Therefore, by
executing the controller (24) for a sufficiently large but finite
time, the agent can visit these different neighborhoods and
trace a path whose waypoints are close to those of A. •

Remark VI.9. (C-CLF-CBF-RRT for Higher-Relative De-
gree Systems): C-CLF-CBF-RRT can be adapted to the
setting where h is a HOCBF, cf. Section IV-D, with the
following modifications:

(i) xinit and Xgoal lie in C ∩ C2 ∩ . . . ∩ Cm̄;
(ii) RANDOM STATE returns states from C ∩ C2 ∩ . . . ∩ Cm̄

(or a subset of it consisting of stabilizable points);
(iii) COMPATIBILITY employs the conditions described in

Proposition IV.11 instead of those in Proposition IV.1 to
check the compatibility of CLFs and HOCBFs. •

14

VII. SIMULATION AND EXPERIMENTAL VALIDATION

Here we illustrate the performance of C-CLF-CBF-RRT in
simulation and hardware experiments. Throughout the section,
we deal with a differential-drive robot following the unicycle
dynamics:

ẋ = v cos(θ), (29a)
ẏ = v sin(θ), (29b)

θ̇ = ω, (29c)

where s = [x, y] ∈ R2 is the position of the robot, θ its
heading, and v and ω are its linear and angular velocity control
inputs, respectively. Following [56, Section IV], we set

R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, p =

[
x
y

]
+ l0R(θ)e1,

where e1 = [1, 0]T and l0 > 0 is a design parameter. This
defines p as a point orthogonal to the wheel axis of the robot.
Moreover, let

L =

[
1 0
0 1/l0

]
.

Even though the dynamics (29) are nonlinear, it follows that
ṗ = R(θ)L−1u, where u = [v, w]T . By defining the new
control input ũ = R(θ)L−1u, the state p follows single
integrator dynamics. The original angular and linear velocity
inputs can be easily obtained from ũ as u = LR(θ)−1ũ.
Since p can be made arbitrarily close to [x, y] by taking l0
sufficiently small, in what follows we consider p as our state
variable. Throughout the experiments, we use αl(s) = 5s for
all l ∈ [M] and η = 2m. We also use τ = 5 and constants
σ = 0.5, σ̄ = 2 as defined in Section V. The results we present
in this section have been obtained without the need to resort
to increase the value of σ or σ̄ at every iteration, or perform
other similar heuristics. Once the robot is within 0.5m of a
given waypoint, we switch the controller so that it steers the
robot towards the next waypoint.

A. Computer Simulations

We have tested C-CLF-CBF-RRT in different simulation
environments in a high-fidelity Unity simulator on an Ubuntu
PC with Intel Core i9-13900K 3 GHz 24-Core processor. We
utilize the function minimize from the library SCIPY [68]
to solve the optimization problems in the COMPATIBILITY
function. The robots used in the simulation are Clearpath
Husky1 robots, which have the same LIDAR and sensor
capabilities as the real ones, and these are used to run a SLAM
system that allows each robot to localize itself in the environ-
ment and obtain its current state, which is needed to implement
the controller from (24). The first simulation environment
consists of a series of red obstacles whose projection on the
navigation plane is either a circle or a polytope. The second
simulation consists of an environment with different rooms.
The different walls are modeled as obstacles using nonsmooth
CBFs, given that their projection on the navigation plane are

1Spec. sheets for the Husky and Jackal robots can be found at
https://clearpathrobotics.com

quadrilaterals. To ensure that the whole physical body of the
robot remains safe, we add a slack term to the CBF that takes
into account the robot dimensions. For example, for a circular
obstacle with center at xc ∈ R2 and radius r > 0, and a
circular robot with radius r0 > 0, the CBF can be taken as
h(x) = ‖x− xc‖2 − (r+ r0)2. Both simulation environments
have dimensions 20m × 50m, and in each of them the
projection of the obstacles in the navigation plane is either a
circle or a polytope, so the COMPATIBILITY function runs
efficiently (cf. Section IV). Figure 2 shows the tree generated
by C-CLF-CBF-RRT in both simulation experiments, as well
as the corresponding trajectory executed by the robot using the
controller obtained as the solution of (24), which successfully
reaches the end goal while remaining collision-free.

(a) Environment with obstacles

(b) Environment with rooms

Fig. 2: (a) First and (b) second simulation environment experiments. Tree
generated by C-CLF-CBF-RRT (black), waypoints of the returned path (dark
yellow) and trajectory followed by the robot using the controller from (24)
(red). The starting point is the green dot and the end goal is the purple dot. In
each environment, the robot successfully visits the waypoints while avoiding
collisions with obstacles.

B. Hardware Experiments

We have also tested C-CLF-CBF-RRT in a physical envi-
ronment using a Clearpath Jackal robot. The robot is equipped
with GPS, IMU and LIDAR sensors, which are used to run
a SLAM system to localize its position in the environment
and execute the controller from (24). The environment, with
dimensions 4m × 9m, consists of different obstacles whose

15

projection on the navigation plane is either a circle or a
polytope. We ensure the whole physical body of the robot
remains safe using a slack term in the CBF formulation,
as described in Section VII-A. Figure 3(a) shows the tree
generated by C-CLF-CBF-RRT as well as the trajectory
executed by the robot, successfully reaching its goal. We use
αl(s) = 5s for all l ∈ [M] and choose η = 2m. Once the robot
is within 0.5m of a given waypoint, we switch the controller
so that it steers the robot towards the next waypoint.

(a) C-CLF-CBF-RRT

(b) GEOM-RRT

Fig. 3: Execution of (a) C-CLF-CBF-RRT and (b) GEOM-RRT in the
hardware experiment. In both plots, tree generated by the corresponding
algorithm (black), waypoints of the returned path (dark yellow), and trajectory
followed by the robot (red) using the controller from (24) (red). The starting
point is the green dot and the end goal is the purple dot. The trajectory
executed by the robot under C-CLF-CBF-RRT reaches its goal safely,
whereas it fails under GEOM-RRT because it quickly encounters a point where
the optimization problem (24) is infeasible.

C. Comparison with GEOM-RRT

Here we compare the performance of C-CLF-CBF-RRT
with GEOM-RRT in both the simulation and hardware environ-
ments. Figure 3(b) shows the tree generated by GEOM-RRT as
well as the trajectory executed by the robot in the hardware
environment using the controller obtained from (24). One can
observe that the trajectory generated by the robot is unable
to reach the end goal and stops rather early, at a point where
the optimization problem (24) becomes infeasible. This occurs
because GEOM-RRT does not take into account the dynamic
feasibility of the path it generates.

We should point out that the steering parameter η critically
affects the performance of GEOM-RRT. To show this, we run
various executions of GEOM-RRT in the simulation environ-
ment with obstacles depicted in Figure 2(a). Table I shows that

smaller values of η yield a higher percentage of feasible paths
but with a higher average execution time. For comparison, the
average execution time of C-CLF-CBF-RRT, whose paths
are always dynamically feasible, for the same simulation
environment and with η = 4m, is 8.72 seconds. To match the
dynamic feasibility of the produced paths, GEOM-RRT has to
be run with η = 1m, at a significantly higher computational
cost.

η (meters) Percentage of
feasible paths

Average execution
time (seconds)

1 100% 154.36
2 90% 140.62
4 50% 130.62
8 30% 4.83
16 5% 1.84

TABLE I: Comparison of the percentage of feasible paths (i.e., paths for which
the controller in (5) steers the robot from the initial point to the end goal by
following the waypoints generated by the path) and the average execution
time of GEOM-RRT (over 20 executions). The paths are generated for the
simulation environment with obstacles in Figure 2(a).

Remark VII.1. (Convergence to waypoints): Since the robot
asymptotically converges to each waypoint, we observe in
the experiments that it tends to slow down when reaching a
waypoint and speed up when switching to the next one. Here
we describe ways in which this behavior can be alleviated:

(i) Modifying the objective function: The minimum-norm
controller in (24) naturally seeks the smallest control
action, which can lead to the observed slowing down
effect near waypoints. Alternatively, given a nominal
controller unom : Rn → Rm with a desired behavior
(towards a waypoint or the end goal), one can modify
the objective function in (24) by 1

2 ‖u− unom(x)‖2 and
implement the resulting controller.

(ii) Finite-time CLFs: Fixed-time Control Lyapunov Func-
tion [69] can be used to design controllers that guarantee
convergence to a desired waypoint within a specified
time horizon. By extending the notion of compatibility
to consider BNCBFs and finite-time CLFs, the optimiza-
tion problems (6) and (7) can be reformulated using
finite-time CLFs. Then, these optimization problems can
be utilized to define a version of C-CLF-CBF-RRT that
accounts for finite-time CLFs. We leave the study of the
properties of such an algorithm for future work.

(iii) CLF convergence rate: given a closed-loop system
satisfying the CLF condition (2), the function W dictates
the rate of decrease of trajectories to the origin. For
example, by taking W (x) = γV (x), with γ > 0,
trajectories of the closed-loop system converge to the
origin at a rate γ. Therefore, by increasing γ, the rate
of convergence can be increased. However, it should be
pointed out that an increased rate of convergence might
compromise the compatibility of V with a CBF. •

D. Comparison with CBF-RRT and LQR-CBF-RRT*

Here we compare C-CLF-CBF-RRT with other related al-
gorithms in the literature leveraging CBFs. First, we compare it
with CBF-RRT, a sampling-based motion planning algorithm
proposed in [42] that also employs control barrier functions.

16

Initially, CBF-RRT starts with a tree consisting of a single
node in xinit. Then, each iteration of CBF-RRT operates as
follows. First, it randomly samples a vertex x0 from the current
tree. Next, it generates a reference input, e.g., one steering
the robot from x0 to the goal set Xgoal (cf. [42, Section 5]
for more details). Finally, for a fixed period of simulated
time T0, at every state it executes the controller closest to
the reference input that satisfies the CBF conditions associ-
ated to all obstacles. This quadratic optimization program is
solved using the convex optimization library CVXOPT [70].
The state xnew reached by the robot after this period of
time T0 gets added to the tree. To generate the trajectory,
we numerically integrate the closed-loop system using the
odeint method from the Python library SCIPY [68] and
use a time discretization step of 0.005 seconds. We have
ran multiple times C-CLF-CBF-RRT and CBF-RRT in the
simulation environment with obstacles of Figure 2(a). Note
that CBF-RRT is more computationally costly, as it requires
running a trajectory for every new node added to the tree.
Furthermore, this trajectory is generated by a controller that is
obtained as the solution of an optimization problem at every
point. In contrast, C-CLF-CBF-RRT only requires solving
a single optimization problem (and, in the cases discussed
in Section IV-C, not even that, since an algebraic check is
enough) for every new node added to the tree. For example,
if T0 is small (e.g., T0 = 5), the average execution time of
CBF-RRT exceeds one minute. For T0 = 15, the average
execution time of CBF-RRT (over 10 different runs) is 384.58
seconds. The average execution time is similar for T0 = 10,
T0 = 20. These numbers seem to indicate that smaller values
of T0 find a feasible path more rapidly, but such paths contain
a larger number of waypoints. In contrast, larger values of
T0 lead to paths with a smaller number of waypoints but
require more time to be found. In comparison, the average
execution time of C-CLF-CBF-RRT with the same initial
point and end goal (and with αl(s) = 5s for all l ∈ [M] and
η = 4m) is 8.72 seconds, almost two orders of magnitude
faster. We should also point out that there exists a trade-
off between the computational complexity of CBF-RRT and
the underlying safety guarantees. Indeed, since the CBF-
QP controller cannot be solved continuously, CBF-RRT [42]
solves the CBF-QP optimization problem periodically along
the generated trajectory with sampling time T0. As a con-
sequence, in-between the times when the CBF-QP is solved,
safety violations may occur. One way to remedy this is to solve
the CBF-QP at a higher frequency. However, this increases
the computational complexity of CBF-RRT, since the overall
number of optimization problems to be solved is higher.

Finally, we compare C-CLF-CBF-RRT with
LQR-CBF-RRT*. This is a sampling-based algorithm
proposed in [44] which generates reference trajectories using
LQR-based controllers of linearized dynamics around a new
added node to the RRT, and checks the CBF condition at
a finite set of points along this reference trajectory. The
resolution with which such CBF condition is checked affects
the safety of the overall trajectory (theoretically, it is safe
only if every point satisfies the CBF condition). Table II
compares different resolutions with which the CBF condition

checks are made, along with the corresponding average
execution times (over 20 runs) and safety violations (which,
to have a fair comparison with C-CLF-CBF-RRT, has
been implemented without the adaptive sampling procedure
described in [44, Section V.C]). Smaller resolutions naturally
lead to larger execution times and a smaller percentage of
safety violations. We note that a resolution of 0.01m leads to
no safety violations and only has a slightly higher execution
time compared to C-CLF-CBF-RRT. However, this lack of
safety violations is not theoretically guaranteed in general
and it is not known a priori what resolution results in no
safety violations.

Resolution (m) Average execution time (s) Safety violations
0.5 0.26 60 %
0.1 1.09 40 %
0.05 1.7 5 %
0.01 11.31 0 %

TABLE II: Comparison of the resolution with which the CBF checks are made
in LQR-CBR-RRT* and the corresponding average execution time (over 20
executions). The paths are generated for the simulation environment with
obstacles in Figure 2(a).

VIII. CONCLUSIONS

We have introduced C-CLF-CBF-RRT, a sampling-based
motion planning algorithm that generates dynamically feasible
collision-free paths from an initial point to an end goal.
The algorithm creates a sequence of waypoints and results
in a well-defined CLF-CBF-based controller that generates
trajectories guaranteed to be safe and to sequentially visit
the waypoints. These guarantees are based on a result of
independent interest that shows that the problem of verify-
ing whether a CLF and a BNCBF are compatible in a set
of interest can be solved by finding the optimal value of
an optimization problem. For systems with linear dynamics,
quadratic CLFs, and CBFs of polytopic or ellipsoidal obsta-
cles, this optimization problem is a QCQP, and for CBFs of
circular obstacles, it can be solved in closed form. In these
scenarios, this ensures that C-CLF-CBF-RRT can be executed
efficiently. Finally, we have shown that C-CLF-CBR-RRT is
probabilistically complete and can be generalized to systems
where safety constraints have a high relative degree. Simu-
lations and hardware experiments illustrate the performance
and computational benefits of C-CLF-CBR-RRT. Future work
will explore the extension of the results to other sampling-
based algorithms (e.g., RRT*, bidirectional RRT), construct
asymptotically optimal versions of C-CLF-CBR-RRT, and
integrate available computational tools to find CLFs and verify
the compatibility of CLF-CBF pairs. We also plan to explore
techniques to alleviate the observed slowing down effect near
waypoints, consider systems under uncertainty, both in the
robot dynamics and the obstacles in the environment, and
extend hardware implementations of C-CLF-CBF-RRT to
more complex systems exploiting the notion of differential
flatness.

ACKNOWLEDGMENTS

This work was supported by the Tactical Behaviors for
Autonomous Maneuver (TBAM) ARL-W911NF-22-2-0231

17

and W911NF-25-2-0042. Part of this work was conducted
during an internship by the first author at the U.S. Army
Combat Capabilities Development Command Army Research
Laboratory in Adelphi, MD during the summer of 2024.

REFERENCES

[1] M. Diehl, H. G. Bock, H. Diegam, and P. B. Wieber, Fast Motions in
Biomechanics and Robotics. New York: Springer, 2006.

[2] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of
collision-free trajectories for a quadrocopter fleet: A sequential convex
programming approach,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, Algarve, Portugal, 2012, pp. 1917–1922.

[3] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-Based Collision
Avoidance,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 972–983, 2021.

[4] J. Tordesillas and J. P. How, “MADER: Trajectory planner in multiagent
and dynamic environments,” IEEE Transactions on Robotics, vol. 38,
no. 1, pp. 463–476, 2021.

[5] ——, “PANTHER: Perception-aware trajectory planner in dynamic
environments,” IEEE Access, vol. 10, pp. 22 662–22 677, 2022.

[6] W. Ding, W. Gao, K. Wang, and S. Shen, “An efficient B-spline-based
kinodynamic replanning framework for quadrotors,” IEEE Transactions
on Robotics, vol. 35, no. 6, pp. 1287–1306, 2019.

[7] C. Richter, A. Bry, and N. Roy, Polynomial Trajectory Planning for
Aggressive Quadrotor Flight in Dense Environments. New York:
Springer, 2016.

[8] N. Csomay-Shanklin, W. D. Compton, and A. D. Ames, “Dynamically
feasible path planning in cluttered environments via reachable bezier
polytopes,” arXiv preprint arXiv:2411.13507, 2023.

[9] T. Marcucci, M. Petersen, D. V. Wrangel, and R. Tedrake, “Motion
planning around obstacles with convex optimization,” Science Robotics,
vol. 8, no. 84, p. eadf7843, 2023.

[10] T. Marcucci, J. Umemberger, P. Parrillo, and R. Tedrake, “Shortest Paths
in Graphs of Convex Sets,” SIAM Journal on Optimization, vol. 34,
no. 1, pp. 507–532, 2024.

[11] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional space,”
IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–
580, 1996.

[12] S. M. LaValle, “Rapidly-exploring random trees : a new tool for path
planning,” The Annual Research Report, 1998.

[13] J. Kuffner and S. LaValle, “RRT-connect: an efficient approach to single-
query path planning,” in IEEE Int. Conf. on Robotics and Automation,
San Francisco, USA, 2000, pp. 995–1001.

[14] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006,
available at http://planning.cs.uiuc.edu.

[16] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically
optimal motion planning for robots with linear dynamics,” in IEEE
Int. Conf. on Robotics and Automation, Karlsruhe, Germany, 2013, pp.
5054–5061.

[17] L. Yi, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” International Journal of Robotics Re-
search, vol. 35, no. 5, pp. 528–564, 2016.

[18] E. Glassman and R. Tedrake, “A quadratic regulator-based heuristic
for rapidly exploring state space,” in IEEE Int. Conf. on Robotics and
Automation, Anchorage, USA, 2010, pp. 5021–5028.

[19] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez,
“Optimal sampling-based motion planning with automatically derived
extension heuristics,” in IEEE Int. Conf. on Robotics and Automation,
St. Paul, USA, 2012, pp. 2537–2542.

[20] A. J. LaValle, B. Sakcak, and S. M. LaValle, “Bang-bang boosting of
RRTs,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, Detroit,
USA, 2023, pp. 2869–2876.

[21] L. Palmieri and K. O. Arras, “Distance metric learning for RRT-based
motion planning with constant-time inference,” in IEEE Int. Conf. on
Robotics and Automation, Seattle, USA, 2015, pp. 637–643.

[22] Y. Li and K. E. Bekris, “Learning approximate cost-to-go metrics
to improve sampling-based motion planning,” in IEEE Int. Conf. on
Robotics and Automation, Shanghai, China, 2011, pp. 4196–4201.

[23] W. J. Wolfslag, M. Bharatheesha, T. M. Moerland, and M. Wisse, “RRT-
CoLearn: Towards kinodynamic planning without numerical trajectory
optimization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1655–1662, 2018.

[24] H. L. Chiang, J. Hsu, M. Fiser, L. Rapia, and A. Faust, “RL-RRT:
kinodynamic motion planning via learning reachability estimators from
RL policies,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
4298–4305, 2019.

[25] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “LQR-
trees: Feedback Motion Planning via Sums-of-Squares Verification,” The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1038–
1052, 2010.

[26] P. A. Parrilo, “Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization,” Ph.D. dissertation,
California Institute of Technology, 2000.

[27] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis,
vol. 7, no. 11, pp. 1163–1173, 1983.

[28] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: theory and applications,”
in European Control Conference, Naples, Italy, 2019, pp. 3420–3431.

[29] P. Wieland and F. Allgöwer, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462–467,
2007.

[30] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[31] L. Wang, A. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Transactions on Robotics,
vol. 33, no. 3, pp. 661–674, 2017.

[32] P. Mestres and J. Cortés, “Optimization-based safe stabilizing feedback
with guaranteed region of attraction,” IEEE Control Systems Letters,
vol. 7, pp. 367–372, 2023.

[33] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier functions
based quadratic programming with application to adaptive cruise con-
trol,” in IEEE Conf. on Decision and Control, 2014, pp. 6271–6278.

[34] S. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with applications to bipedal robot walking,” in
American Control Conference, Chicago, USA, July 2015.

[35] M. F. Reis, A. P. Aguilar, and P. Tabuada, “Control barrier function-
based quadratic programs introduce undesirable asymptotically stable
equilibria,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 731–736,
2021.

[36] X. Tan and D. V. Dimarogonas, “On the undesired equilibria induced
by control barrier function based quadratic programs,” Automatica, vol.
159, p. 111359, 2024.

[37] Y. Chen, P. Mestres, E. Dall’Anese, and J. Cortés, “Characterization of
the dynamical properties of safety filters for linear planar systems,” in
IEEE Conf. on Decision and Control, Milan, Italy, 2024, pp. 2397–2402.

[38] W. S. Cortez and D. V. Dimarogonas, “On compatibility and region
of attraction for safe, stabilizing control laws,” IEEE Transactions on
Automatic Control, vol. 67, no. 9, pp. 7706–7712, 2022.

[39] P. Ong and J. Cortés, “Universal formula for smooth safe stabilization,”
in IEEE Conf. on Decision and Control, Nice, France, Dec. 2019, pp.
2373–2378.

[40] A. Ahmad, C. Belta, and R. Tron, “Adaptive sampling-based motion
planning with control barrier functions,” in IEEE Conf. on Decision and
Control, Cancun, Mexico, Dec. 2022, pp. 4513–4518.

[41] K. Majd, S. Yaghoubi, T. Yamaguchi, B. Hoxha, D. Prokhorov, and
G. Fainekos, “Safe navigation in human occupied environments using
sampling and control barrier functions,” in IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, Prague, Czech Republic, 2021, pp. 5794–
5800.

[42] G. Yan, B. Vang, Z. Serlin, C. Belta, and R. Tron, “Sampling-based
motion planning using control barrier functions,” in International Con-
ference on Automation, Control and Robots, Prague, Czech Republic,
2019, pp. 22–29.

[43] A. Manjunath and Q. Nguyen, “Safe and Robust Motion Planning for
Dynamic Robotics via Control Barrier Functions,” in IEEE Conf. on
Decision and Control, Austin, USA, 2021, pp. 2122–2128.

[44] G. Yang, M. Cai, A. Ahmad, A. Prorok, R. Tron, and C. Belta,
“LQR-CBF-RRT*: Safe and Optimal Motion Planning,” arXiv preprint
arXiv:2304.00790, 2023.

[45] E. D. Sontag, Mathematical Control Theory: Deterministic Finite Di-
mensional Systems, 2nd ed., ser. TAM. Springer, 1998, vol. 6.

[46] R. A. Freeman and P. V. Kototovic, Robust Nonlinear Control De-
sign: State-space and Lyapunov Techniques. Cambridge, MA, USA:
Birkhauser Boston Inc., 1996.

[47] P. Glotfelter, J. Cortés, and M. Egerstedt, “Nonsmooth approach to
controller synthesis for Boolean specifications,” IEEE Transactions on
Automatic Control, vol. 66, no. 11, pp. 5160–5174, 2021.

18

[48] M. Kleinbort, K. Solovey, Z. Littlefield, K. Bekris, and D. Halperin,
“Probabilistic completeness of RRT for geometric and kinodynamic
planning with forward propagation,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. i–vii, 2019.

[49] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.
[50] P. Mestres, A. Allibhoy, and J. Cortés, “Regularity properties of

optimization-based controllers,” European Journal of Control, vol. 81,
p. 101098, 2025.

[51] H. Tuy, Nonconvex Quadratic Programming. New York: Springer,
1998.

[52] J. Park and S. Boyd, “General heuristics for nonconvex
quadratically constrained quadratic programming,” arXiv preprint
arXiv:1703.07870v2, 2017.

[53] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” in IEEE Conf. on Decision and Control, Nice, France,
Dec. 2019, pp. 474–479.

[54] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.
[55] G. Yang, C. Belta, and R. Tron, “Self-triggered control for safety

critical systems using control barrier functions,” in American Control
Conference, Philadelphia, USA, Jul. 2019, pp. 4454–4459.

[56] P. Glotfelter, I. Buckley, and M. Egerstedt, “Hybrid nonsmooth barrier
functions with applications to provably safe and composable collision
avoidance for robotic systems,” IEEE Robotics and Automation Letters,
vol. 4, no. 2, pp. 1303–1310, 2019.

[57] P. Mestres, C. Nieto-Granda, and J. Cortés, “Distributed safe navigation
of multi-agent systems using control barrier function-based controllers,”
IEEE Robotics and Automation Letters, vol. 9, no. 7, pp. 6760–6767,
2024.

[58] W. Tan, “Nonlinear control analysis and synthesis using sum-of-squares
programming,” Ph.D. dissertation, University of California, Berkeley,
2006.

[59] H. Dai, C. Jian, H. Zhang, and A. Clark, “Verification and Synthesis of
Compatible Control Lyapunov and Control Barrier Functions,” in IEEE
Conf. on Decision and Control, Milan, Italy, 2024, pp. 8178–8185.

[60] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using
robust neural Lyapunov-barrier functions,” London, UK, 2021.

[61] Y.-C. Chang, N. Roohi, and S. Gao, “Neural Lyapunov control,” in Con-
ference on Neural Information Processing Systems, vol. 32, Vancouver,
Canada, Dec. 2019, pp. 3240–3249.

[62] H.Ravanbakhsh and S. Sankaranarayanan, “Learning control Lyapunov
functions from counterexamples and demonstrations,” Autonomous
Robots, vol. 43, pp. 275–307, 2019.

[63] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes:
A Friendly Introduction for Electrical and Computer Engineers. John
Wiley and Sons, 2004.

[64] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “On differentially flat
nonlinear system,” in IFAC Symposium on Nonlinear Control Systems,
Bourdeaux, France, 1992, pp. 408–412.

[65] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in IEEE Int. Conf. on Robotics and Automation,
Shanghai, China, 2011, pp. 2520–2525.

[66] L. E. Beaver and A. A. Malikopoulos, “Optimal control of differentially
flat systems is surprisingly easy,” Automatica, vol. 159, p. 111404, 2024.

[67] J. Lévine, “On the equivalence between differential flatness and dynamic
feedback linearizability,” IFAC Proceedings Volumes, vol. 40, no. 20, pp.
338–343, 2007.

[68] P. Virtanen, R. Gommers, T. E. Oliphant et al., “SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python,” Nature Methods,
vol. 17, pp. 261–272, 2020.

[69] K. Garg, E. Arabi, and D. Panagou, “Fixed-time control under spatiotem-
poral and input constraints: A quadratic programming based approach,”
Automatica, vol. 141, p. 110314, 2022.

[70] M. S. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: A python
package for convex optimization, version 1.1.6.” Available at cvxopt.org,
2013, 2013.

APPENDIX

The following result shows that the problem of checking
whether the optimization problem (25) is feasible can be
simplified by only checking the pairwise feasibility of the
CLF constraint and the CBF constraints associated with the
obstacles that intersect with Θ (as defined in Section V-C).

Lemma A.1. (Checking pairwise compatibility of a reduced
set of CBFs): Let xnear ∈ Rn, xnew ∈ Rn, and V : Rn → R be

a CLF with respect to xnew. Define Θ = {x ∈ Rn : V (x) ≤
V (xnear)}. Let L := {l ∈ [M] : Θ ∩ Cl(Ol) = ∅}. Suppose
that there exists a set of extended class K∞ functions {αl}l∈L
such that for each l ∈ L, the problem

min
u∈Rm

1

2
‖u‖2 (30)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −αl(hj,l(x)), j ∈ Il(x),

LfV (x) + LgV (x)u+W (x) ≤ 0,

is feasible for all x ∈ Θ∩F and there exists a set of disjoint
open sets {Yl}l∈L (with Yl being a neighborhood of ∂Ol
satisfying Yl∩Ol′ = ∅ for all l′ 6= l) and a bounded controller
û satisfying the constraints in (30) for each x ∈ Yl∩Θ∩F and
l ∈ L. Then, there exists a set of extended class K∞ functions
{ᾱl}l∈[M] such that

min
u∈Rm

1

2
‖u‖2 (31)

s.t. Lfhj,l(x) + Lghj,l(x)u ≥ −ᾱl(hj,l(x)),

∀j ∈ Il(x), l ∈ L,
LfV (x) + LgV (x)u+W (x) ≤ 0.

is feasible for all x ∈ Θ ∩ F .

Proof. Let l ∈ L. Note that since Yl ∩ Ol′ = ∅ for all l′ ∈
[M]\{l}, there exists dl > 0 such that hl′(x) ≥ dl for all
l′ ∈ [M]\{l} and x ∈ Yl∩Θ∩F . Now, take α̂l > 0 such that

α̂l >

sup
x∈Yl∩Θ∩F

|Lfhj,l′(x) + Lghj,l′(x)û(x)|

dl

for all l′ ∈ [M]\{l} and j ∈ Il′(x). Note that such α̂l exists
because û is bounded and Θ is compact. Further let α̂ > α̂l for
all l ∈ L, and take ᾱl so that ᾱl(s) > max{αl(s), α̂s} for all
s ≥ 0. Now, û(x) is feasible for (31) for any x ∈

(⋃
l∈L Yl

)
∩

Θ ∩ F . On the other hand, there exists d−1 > 0 such that
hl(x) > d−1 for all l ∈ [M] and x ∈ Θ ∩ F\

(⋃
l∈L Yl

)
.

Now, take α̂−1 > 0 such that

α̂−1 >

sup
x∈Θ∩F\(

⋃
l∈L Yl)

|Lfhj,l(x) + Lghj,l(x)û(x)|

d−1
,

for all l ∈ [M] and j ∈ Il(x). Again, such α̂−1 exists
because û is bounded and Θ is compact. Further let α̂∗ >
max{α̂, α̂−1} and take ᾱl so that ᾱl(s) > max{αl(s), α̂∗s}
for all s ≥ 0. Hence, û(x) is feasible for (31) for any
x ∈ Θ ∩ F .

Pol Mestres received the Bachelor’s degree in
mathematics and the Bachelor’s degree in engi-
neering physics from the Universitat Politècnica de
Catalunya, Barcelona, Spain, in 2020, and the Mas-
ter’s degree in mechanical engineering in 2021 from
the University of California, San Diego, La Jolla,
CA, USA, where he is currently a Ph.D. candidate.
His research interests include safety-critical control,
optimization-based controllers, distributed optimiza-
tion and motion planning.

19

Symbol Meaning
Dynamics

n state dimension
m input dimension
f , g vector fields defining dynamics

CBF definitions
M number of obstacles
Ol l-th obstacle
hl BNCBF associated with l-th obstacle
Il(x) set of active indices for hl at x ∈ Rn
F safe space
Nl number of functions defining hl
hi,l i-th function defining hl
m̄ relative degree of a HOCBF

Zl,J
set of points where active constraints for

Ol have indices in J
{βi}i∈J optimization variables in 6, 7

CLF-CBF compatible path
A = {xi}Na

i=1 CLF-CBF compatible path
Na number of waypoints in A
xinit starting point of A
Xgoal goal set
Vi CLF with respect to waypoints xi+1

Γi {x ∈ Rn : Vi(x) ≤ Vi(xi+1)}
Wi positive definite associated with Vi

αi,l
extended class K∞ associated to

waypoint xi+1 and Ol
C-CLF-CBF-RRT

T tree constructed in C-CLF-CBF-RRT
xrand randomly sampled node
xnew new node to be added to T
xnear nearest node in T to xnew

k number of iterations of C-CLF-CBF-RRT
η steering parameter in NEW STATE

τ
number of updates of {αl}l∈[M]

and W in COMPATIBILITY

V,W
CLF and associated positive definite function

returned by FIND CLF
COMPATIBILITY

Θ {x ∈ Rn : V (x) ≤ V (xnear)}
L {l ∈ [M] : Cl(Ol) ∩Θ 6= ∅}
ζ1,l solution of (6) for l ∈ L
ζ2,l solution of (7) for l ∈ L

Notation in Proposition VI.4
δclear positive number such that B(xi, δclear) ⊂ F
Ni neighborhood of waypoint xi in Lemma VI.2
Γ̂i superset of Γi in Lemma VI.2

Γy1,y2 {x ∈ Rn : Vy2(x) ≤ Vy2(y1)}
Z Z = {z ∈ F : ∃l ∈ [M] s.t. d(z,Ol) ≤ δclear

2
}

Simulations
R(θ) rotation matrix of angle θ

v, ω
linear and angular velocities

in unicycle model

TABLE III: Summary of symbols used in the paper.

Carlos Nieto-Granda is a Research Scientist in the
Science of Intelligent Systems Division at the U.S.
Army Research Laboratory (DEVCOM/ARL). He
has obtained a B.S. degree in Electronics Systems
from Tecnológico de Monterrey, Campus Estado
de Mexico, Mexico; an M.S. degree in Computer
Science from Georgia Institute of Technology; and
a Ph.D. degree in Intelligent Systems, Robotics, and
Control from University of California San Diego.
His research interests include autonomous explo-
ration, coordination, and decision-making for het-

erogeneous multi-robot teams focused on state estimation, sensor fusion,

computer vision, localization and mapping, autonomous navigation, and
control in complex environments. He is a recipient of the 2022 Transactions
on Robotics King-Sun Fu Memorial Best Paper Award.

Jorge Cortés (M’02, SM’06, F’14) received the
Licenciatura degree in mathematics from Univer-
sidad de Zaragoza, Zaragoza, Spain, in 1997, and
the Ph.D. degree in engineering mathematics from
Universidad Carlos III de Madrid, Madrid, Spain,
in 2001. He held postdoctoral positions with the
University of Twente, Twente, The Netherlands,
and the University of Illinois at Urbana-Champaign,
Urbana, IL, USA. He was an Assistant Professor
with the Department of Applied Mathematics and
Statistics, University of California, Santa Cruz, CA,

USA, from 2004 to 2007. He is a Professor and Cymer Corporation Endowed
Chair in High Performance Dynamic Systems Modeling and Control at
the Department of Mechanical and Aerospace Engineering, University of
California, San Diego, CA, USA. He is a Fellow of IEEE, SIAM, and
IFAC. His research interests include distributed control and optimization,
network science, nonsmooth analysis, reasoning and decision making under
uncertainty, network neuroscience, and multi-agent coordination in robotic,
power, and transportation networks.

	Introduction
	Preliminaries
	Control Lyapunov and Control Barrier Functions
	Rapidly-exploring Random Trees (RRTs)

	Problem Statement
	CLF and BNCBF Compatibility Verification
	Compatibility Verification for General Dynamics and Obstacles
	Compatibility Verification for Linear Systems and Polytopic Obstacles
	Compatibility Verification for Linear Systems and Ellipsoidal Obstacles
	Compatibility Verification for Higher Relative Degree Systems

	C-CLF-CBF-RRT
	CLF-CBF Compatible Paths
	Algorithm Description
	The COMPATIBILITY function

	Analysis of C-CLF-CBF-RRT
	Simulation and Experimental Validation
	Computer Simulations
	Hardware Experiments
	Comparison with GEOM-RRT
	Comparison with CBF-RRT and LQR-CBF-RRT*

	Conclusions
	References
	Appendix
	Biographies
	Pol Mestres
	Carlos Nieto-Granda
	Jorge Cortés

