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Abstract— Control systems operating in the real world face
countless sources of unpredictable uncertainties. These random
disturbances can render deterministic guarantees inapplica-
ble and cause catastrophic safety failures. To overcome this,
this paper proposes a method for designing safe controllers
for discrete-time stochastic systems that retain probabilistic
guarantees of safety. To do this we modify the traditional
notion of a control barrier function (CBF) to explicitly account
for these stochastic uncertainties and call these new modified
functions probabilistic CBFs. We show that probabilistic CBFs
can be used to design controllers that guarantee safety over
a finite number of time steps with a prescribed probability.
Next, by leveraging various uncertainty quantification methods,
such as concentration inequalities, the scenario approach, and
conformal prediction, we provide a variety of sufficient condi-
tions that result in computationally tractable controllers with
tunable probabilistic guarantees across a plethora of practical
scenarios. Finally, we showcase the applicability of our results
in simulation and hardware for the control of a quadruped
robot.

I. INTRODUCTION

Motivated by applications in autonomous driving, robotics,
and aerospace systems, the topic of safety has recently
received a lot of attention in the control theory community.
In all of these systems, the design and verification of safe
controllers is complicated by the presence of uncertain-
ties in the system, stemming from state estimation errors,
imperfect perception, unmodeled system dynamics, among
others. Although the study and design of safe controllers
that are robust to such sources of uncertainty has received
considerable attention in the literature, most existing works
assume deterministic and bounded disturbances with known
bounds. Such assumptions are uncommon in practice and
lead to overly conservative performance. In contrast, this
work is motivated by the need to design controllers that
maintain safety in the presence of stochastic and potentially
unbounded disturbances, conditions that naturally arise when
employing techniques such as Kalman filtering or simulta-
neous localization and mapping (SLAM).

A. Literature Review

There are a variety of tools to design controllers
with safety guarantees, including control barrier functions
(CBFs) [1], reachability-based controllers [2], and model
predictive control [3]. There has been a substantial effort to
adapt these techniques for systems with uncertainty. In the
CBF literature, this problem has been extensively studied
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for continuous-time systems and deterministic and bounded
disturbances [4]–[8]. Other works have explored the problem
under various uncertainty models, such as stochastic and
possibly unbounded [9]–[13], gaussian process-based [14],
[15] or through Wasserstein ambiguity sets [16], [17]. For
discrete-time systems, the works [12], [13], [18] leverage the
theory of martingales to provide bounds on the probability of
exiting the safe set within a certain time horizon. However,
the condition on the control input derived in these papers
only leverages the first moment of the distribution and can
be conservative if more information about the uncertainty is
available or not applicable if such first moment is unknown.
On the other hand, [19] introduces the risk-sensitive notion
of CVaR safety, and a CBF-based condition that can be used
to certify it. However, controllers based on CVaR safety can
be quite conservative in practice, and are only tractable for
a small class of dynamics and safety constraints. Similar
risk-aware approaches are taken in [20], [21]. The recent
work [22] leverages the scenario approach [23] to design con-
trollers that are safe with a prescribed probability by forcing
them to be safe for a number of different scenarios (i.e.,
uncertainty realizations). Beyond CBF-based approaches,
there exist various works in the literature that study the
problem of guaranteeing safety constraints for discrete-time
systems subject to stochastic uncertainty, particularly in the
context of MPC [24]–[26].

B. Statement of Contributions

We consider the problem of designing safe controllers for
discrete-time stochastic systems. Our first contribution is the
introduction of a probabilistic notion of CBF which we show
can be used to design controllers with probabilistic safety
guarantees over a finite time horizon. However, verifying
whether a function is a probabilistic CBF is impractical,
because it requires knowledge of the uncertainty distribution.
In our second contribution we sidestep this difficulty by in-
troducing two different sufficient conditions which guarantee
that a function is a probabilistic CBF. These conditions only
require knowledge of the moments of the distribution of the
value of the CBF at the next time step. The first condition
only leverages a known upper bound on the CBF and the first
moment of such distribution, whereas the second condition
uses its first and second moments. We also study various
cases under which these conditions are convex in the control
input and are thus amenable to optimization-based control
design. Next, we consider the problem of verifying that a
function is a probabilistic CBF when moment information
is not available but instead we have a dataset consisting of
uncertainty realizations. In our third contribution we leverage



concentration inequalities, scenario optimization, and con-
formal prediction to provide different sufficient conditions
that ensure that a function is a probabilistic CBF with high
confidence. Finally, we validate our results in both simulation
and hardware on quadruped robots.

C. Notation

We denote by N,R the set of natural and real numbers,
respectively. We use bold symbols to represent vectors and
matrices and non-bold symbols to represent scalar quantities.
For N ∈ N, we let [N ] = {1, . . . , N}. Given x ∈ Rn, ∥x∥
denotes its Euclidean norm. Given a matrix M ∈ Rn×n,
Tr(M) denotes its trace. For a random variable Z, we denote
by E[Z] and Var(Z) its expected value and variance, respec-
tively. If Z is multivariate, Cov(Z) denotes its covariance
matrix. Given δ > 0, and k ∈ N values R(1), . . . , R(k) sorted
in non-decreasing order, Quantile1−δ(R

(1), . . . , R(k),∞) de-
notes the 1 − δ quantile of the empirical distribution of
the values R(1), . . . , R(k),∞, which can be equivalently
obtained as R(p), where p = ⌈(k+1)(1−δ)⌉, and ⌈·⌉ denotes
the ceiling function.

II. MOTIVATION

Throughout this paper we consider a discrete-time stochas-
tic system of the form:

xt+1 = F(xt,ut,dt), (1)

with xt ∈ Rn the state, ut ∈ Rm the control input, and dt ∈
Rd a random variable distributed according to a distribution
D, i.e., dt ∼ D. For simplicity, we assume that D is state
and time independent.

Given a user-prescribed safe set C ⊂ Rn, defined as the
0-superlevel set of a continuous function h, (i.e., C = {x ∈
Rn : h(x) ≥ 0}), our goal is to design a state-feedback
controller k : Rn → Rm that ensures that the iterates of
the closed-loop system obtained from (1) by using k remain
in C at all times. However, the presence of the stochastic
disturbance in (1) poses a significant challenge in finding
such controller. In fact, this is impossible if the distribution
D is not supported on a bounded set, because the iterates
will exit the set C in finite time with probability 1 (cf. [27,
Remark 1]). Hence, we are interested in a notion of safety
over a finite time horizon and with a prescribed probability,
which we formalize next.

Definition 1. (Probabilistic safety over a finite time horizon):
Let ϵ ∈ (0, 1), and H ∈ N. We say that the controller k :
Rn → Rm is ϵ-safe over a time horizon H if for any x0 ∈ C,
the iterates of (1) under ut = k(xt) are such that

P
( H⋂

t=0

{xt ∈ C}
)
≥ 1− ϵ.

Next we introduce the notion of probabilistic CBF, which
will prove to be a useful tool to certify probabilistic safety
over a finite time horizon.

Definition 2. (Probabilistic CBF): Let δ ∈ (0, 1). The
function h : Rn → R is a δ-probabilistic CBF if there exists

α ∈ [0, 1] such that for each x ∈ C there exists u ∈ Rm

such that

P
(
h(F(x,u,d)) ≥ αh(x)

)
≥ 1− δ, (2)

where d ∼ D. We note that Definition 2 is simply a prob-
abilistic version of the standard CBF condition for discrete-
time systems [28]. In the sequel, whenever the parameter
δ is clear from the context, we refer to a δ-probabilistic
CBF simply as a probabilistic CBF. We also fix α ∈ [0, 1],
δ ∈ (0, 1) and let ∆h : Rn × Rm × Rd → R be defined
as ∆h(x,u,d) = h(F(x,u,d)) − αh(x). The following
result shows that probabilistic CBFs can be used to verify
the notion of probabilistic safety over a given time horizon
in Definition 1.

Proposition 1. (Probabilistic guarantees over a finite time
horizon): Let x0 ∈ C, H ∈ N, and k : Rn → Rm be such
that u = k(x) satisfies (2) for each x ∈ C. Then, for the
system (1) under ut = k(xt), we have

P
( H⋂

t=0

{xt ∈ C}
)
≥ (1− δ)H . (3)

In particular, for any ϵ > 0, if

δ ≤ 1− (1− ϵ)
1
H , (4)

then k is ϵ-safe over a time horizon H .

Proof. Define the event Γt :=
⋂t

s=0{xs ∈ C}. By the law
of conditional probabilities [29, page 63]

P
( H⋂

t=0

{xt ∈ C}
)
=

H∏
t=1

P
(
xt ∈ C|Γt−1

)
. (5)

Note that for each t ∈ [H],

P
(
xt ∈ C|Γt−1

)
=

P
(
h(F(xt−1,k(xt−1),dt−1)) ≥ 0|Γt−1

)
≥

P
(
h(F(xt−1,k(xt−1),dt−1)) ≥ αh(xt−1)|Γt−1

)
≥ 1− δ,

The first inequality follows from the fact that if xt−1 ∈
C, then h(xt−1) ≥ 0, and h(F(xt−1,k(xt−1),dt−1) ≥
αh(xt−1)) implies that h(F(xt−1,k(xt−1),dt−1) ≥ 0. The
last inequality follows from (2). Hence, by (5) we have
that (3) holds. By taking δ to satisfy (4), it follows that
(1−δ)H ≥ 1−ϵ, and k is ϵ-safe over a time horizon H .

Proposition 1 shows that controllers obtained from the
probabilistic CBF condition (2) can be used to verify the
notion of probabilistic safety introduced in Definition 1.
Unfortunately, verifying that h is a probabilistic CBF as per
Definition 2 is impractical because it requires computing a
probability over the distribution D, which is often unknown.
In the following sections, we devise various sufficient condi-
tions that can be used to verify Definition 2 without requiring
full knowledge of the distribution D.



III. VERIFICATION OF PROBABILISTIC CBFS USING
KNOWN MOMENTS

In practice, although one generally does not know the full
distribution D, it is common to have information about some
of its moments. In this section we study how to leverage this
information to verify that h is a probabilistic CBF. Our first
result establishes a sufficient condition for that to hold by
imposing a constraint on the expected value of ∆h.

Proposition 2. (Markov-based condition): Suppose that
there exists b > 0 such that for all x ∈ C and u ∈ Rm,
∆h(x,u,d) ≤ b almost surely. Furthermore, suppose that
for all x ∈ C, there exists u ∈ Rm such that

E[∆h(x,u,d)] ≥ b(1− δ). (6)

Then, h is a δ-probabilistic CBF.

Proof. Note that by assumption, for each x ∈ C there
exists u ∈ Rm and b > 0 such that the random variable
b − ∆h(x,u,d) is positive almost surely. By Markov’s
inequality [30, Theorem 5.11],

P(∆h(x,u,d) ≤ 0) = P(b−∆h(x,u,d) ≥ b)

≤ E[b−∆h(x,u,d)]

b
.

Now, from (6) we have that E[b − ∇h(x,u,d)] ≤ bδ and
hence we have for each x ∈ C there exists u ∈ Rm such
that P(∆h(x,u,d) ≤ 0) ≤ δ, from where it follows that h
is a δ-probabilistic CBF.

Since (6) is derived though Markov’s inequality, we refer
to it as the Markov-based condition. Proposition 2 shows
that even if the distribution D is unknown, the expected
values of the random variable ∆h(x,u,d)) can be used to
verify that h is a probabilistic CBF. Note also that one simple
condition that ensures that ∆h is uniformly upper bounded
is if h is uniformly upper bounded.

In practice, in order to design a controller that ensures
probabilistic safety, we are interested in including input con-
straints such as (6) as constraints of an optimization problem.
However, as it is also the case for deterministic discrete-
time CBFs [28], the condition (6) is generally not convex
in u, which compromises the computational tractability of
such optimization-based control design. The following result
leverages the convexity properties of h to derive another set
of conditions for which the convexity properties with respect
to u are easier to analyze.

Corollary 3. (Markov-based condition under convexity as-
sumptions): Suppose that there exists b > 0 such that for all
x ∈ C and u ∈ Rm, ∆h(x,u,d) ≤ b almost surely. Further
assume that one of the following conditions holds:

• h is convex and for all x ∈ C there exists u ∈ Rm such
that

∆̃h(x,u) := h(E[F(x,u,d)])− αh(x) ≥ b(1− δ);
(7)

• h is concave, λ > 0 satisfies sup
x∈Rn

∥∥∇2h(x)
∥∥ ≤ λ and

for all x ∈ C, there exists u ∈ Rm such that

∆̂h(x,u) :=∆̃h(x,u)− λ

2
Tr(Cov(F(x,u,d)))≥b(1− δ),

(8)

Then, h is a δ-probabilistic CBF.

Proof. First, if h is convex, by Jensen’s inequality, we
have h(E[F(x,u,d)]) ≤ E[h(F(x,u,d))]. Therefore, the
satisfaction of (7) implies that (6) holds. By Proposition 2,
this means that h is a δ-probabilistic CBF. Second, if h
is concave, by [18, Lemma 1] (which is based on a result
from [31]), we have that

E[h(F(x,u,d))] ≥

h(E[F(x,u,d)])− λ

2
Tr(Cov(F(x,u,d))). (9)

Hence, the satisfaction of (8) implies that (6) holds. By
Proposition 2, this means that h is a δ-probabilistic CBF.

The following remark comments on the convexity proper-
ties with respect to u of the conditions (7) and (8).

Remark 1. (Convexity properties of constraints (7), (8)):
For general F and h, conditions (7) and (8) are not convex
in u. In fact, even if F is affine in u, and h is convex, (7)
is not convex in u. However, in some cases, such as when
h is quadratic, (7) is a quadratic concave constraint in
u. Although it can not be included as a constraint in a
convex program, there exist very efficient heuristics to solve
non-convex quadratically constrained quadratic programs
(QCQPs) [32]. On the other hand, (8) is convex in u if
F is affine in u and d is additive, (i.e. F(x,u,d) =
F1(x)+F2u+d, for F1 : Rn → Rn and F2 ∈ Rn×m) and h
is concave. Additionally, if Trace(Cov(h(F(x,u,d)]))) ≤ c
for some c > 0, h is concave and F is affine in u, then the
condition that we get after replacing λ

2 Tr(Cov(F(x,u,d)))
by λc

2 in (8) is convex in u. •

The following result provides another sufficient condition
for h to be a probabilistic CBF. In this case, the condition
does not require a known upper bound for ∆h but assumes
knowledge of its variance (i.e., its second moment).

Proposition 4. (Cantelli-based condition): Suppose that for
each x ∈ C there exists u ∈ Rm such that

E[∆h(x,u,d)]−
√
Var

(
∆h(x,u,d)

)1− δ

δ
≥ 0. (10)

Then, h is a δ-probabilistic CBF.

Proof. By Cantelli’s inequality [33], we have that for any
x ∈ Rn,u ∈ Rm, and κ ≥ 0,

P
(
∆h(x,u,d) ≤ E[∆h(x,u,d)]− κ

)
≤ Var(∆h(x,u,d))

Var(∆h(x,u,d)) + κ2



By taking κ = κx,u :=

√
Var

(
∆h(x,u,d)

)
1−δ
δ , we have

P
(
∆h(x,u,d) ≤ E[∆h(x,u,d)]− κx,u

)
≤ δ.

Now, for each x ∈ C, select u ∈ Rm so that (10) holds. It
follows that

P
(
∆h(x,u,d) ≤ 0

)
≤

P
(
∆h(x,u,d) ≤ E[∆h(x,u,d)]− κx,u

)
≤ δ.

Hence, P
(
∆h(x,u,d) ≥ 0

)
≥ 1 − δ, and h is a δ-

probabilistic CBF.

Since (10) is derived through Cantelli’s inequality, we refer
to it as the Cantelli-based condition. Proposition 4 shows
that even if the distribution D is unknown, if the expected
value and variance of ∆h are known, then one can verify that
h is a probabilistic CBF. The following result is an analogue
of Corollary 3 for the Cantelli-based condition.

Corollary 5. (Use of convexity properties for Cantelli-based
condition): Let ∆̃h and ∆̂h be defined as in Corollary 3 and
assume that one of the following conditions holds:

• h is convex and for all x ∈ C there exists u ∈ Rm such
that

∆̃h(x,u) ≥
√
Var

(
∆h(x,u,d)

)1− δ

δ
; (11)

• h is concave, λ > 0 satisfies sup
x∈Rn

∥∥∇2h(x)
∥∥ ≤ λ and

for all x ∈ C, there exists u ∈ Rm such that

∆̂h(x,u) ≥
√
Var

(
∆h(x,u,d)

)1− δ

δ
. (12)

Then, h is a δ-probabilistic CBF.

The proof of Corollary 5 follows an argument analogous
to that of Corollary 3.

Remark 2. (Convexity of the associated constraints
for known mean and variance): Comments similar to
those made in Remark 1 follow regarding condi-
tions (10), (11), (12). However, in this case the presence
of the term Var(∆h(x,u,d)) can further complicate the
convexity guarantees for (11), (12). Nonetheless, in the case
where d is additive and h is affine, Var(∆h(x,u,d)) =
Var(h(d)), and (11), (12) have the same dependence in
u as the one discussed in Remark 1. Additionally, in the
case where ∆h is affine in u (10) is a second order cone
(SOC) constraint, which is convex and can be easily used in
a second-order cone program (SOCP) as in [14], [34]. •

The results in Propositions 2 and 4, leverage knowledge
of the first and second moments of the distribution of ∆h
to provide bounds on the probability of its tails. Although it
is possible to derive similar (possibly tighter) results when
knowledge of higher moments is available (cf. [35]–[37]
for concentration inequalities using higher moments), this
usually leads to conditions with complicated dependencies
on the control input u and that are computationally not
amenable for optimization-based control.

IV. VERIFICATION OF PROBABILISTIC CBFS USING
DATA

Section III established a set of results that show how to
verify that a function is a probabilistic CBF by leveraging
moments of the uncertainty distribution. In this section, we
take an alternative approach that relies on the availability of
samples of the uncertainty distribution, rather than knowl-
edge of its moments.

However, since the samples themselves are random, in
general it is not possible to exactly certify that h is a
probabilistic CBF. Instead, one can only do that with a given
confidence. The following definition formalizes this idea.

Definition 3. (Probabilistic CBF with a given confidence):
Let δ ∈ (0, 1) and β ∈ (0, 1). Let DN = {d(i)}Ni=1 be N ∈
N independent identically distributed samples with d(i) ∼ D.
The function h : Rn → R is a δ-probabilistic CBF with
confidence 1 − β if for each x ∈ C, there exists u ∈ Rm

(dependent on the dataset DN ) such that

PN

(
P(∆h(x,u,d) ≥ 0) ≥ 1− δ

)
≥ 1− β, (13)

where PN denotes the probability with respect to DN .

The following result shows that the notion of CBF in
Definition 3 can be used to verify that safety holds over
a finite time horizon with a given probability over the
stochasticity of (1) and a given confidence over DN .

Proposition 6. (Safety over a finite time horizon for proba-
bilistic CBFs with given confidence): Let ϵ ∈ (0, 1) and β̃ ∈
(0, 1). Let DN = {d(i)}Ni=1 be N independent identically
distributed samples with d(i) ∼ D. Let δ ∈ (0, 1), β ∈ (0, 1)

be such that (4) and β ≤ β̃
H hold. Further assume that h is a

δ-probabilistic CBF with confidence 1−β. Let k : Rn → Rm

be such that ut = k(xt) satisfies (13) for each xt ∈ C. Then,
k is ϵ-safe over a horizon H with confidence 1− β̃, i.e., for
any x0 ∈ C, the iterates of (1) under k satisfy

PN

(
P
( H⋂

t=0

{xt ∈ C}
)
≥ 1− ϵ

)
≥ 1− β̃. (14)

Proof. As shown in the proof of Proposition 1 and using the
same notation, for any dataset DN , we have

P
( H⋂

t=0

{xt ∈ C}
)

≥
H∏
t=1

P
(
∆h(xt−1,k(xt−1),dt−1) ≥ 0|Γt−1

)
.

Hence, if we let AN be the event
H∏
t=1

P
(
∆h(xt−1,k(xt−1),dt−1) ≥ 0|Γt−1

)
≥ 1− ϵ,

(defined by the randomness of the dataset DN ) we have

PN

(
P
( H⋂

t=0

{xt ∈ C}
)
≥ 1− ϵ

)
≥ PN (AN ). (15)



Now note that if the dataset DN is such that the event Bt,N ,
defined as

P
(
∆h(xt−1,k(xt−1),dt−1) ≥ 0|Γt−1

)
≥ (1− ϵ)

1
H ,

holds for all t ∈ [H], then AN also holds. Therefore,

PN (AN ) ≥ PN

( H⋂
t=1

Bt,N

)
≥

H∑
t=1

PN (Bt,N )− (H − 1),

(16)

where the last inequality follows from Fréchet’s inequal-
ity [38]. Now, since 1 − δ ≥ (1 − ϵ)

1
H , if the event Ct,N ,

defined as

P
(
∆h(xt−1,k(xt−1),dt−1) ≥ 0|Γt−1

)
≥ 1− δ,

holds, then Bt,N also holds. Therefore, PN (Bt,N ) ≥
PN (Ct,N ). Now, since h is a δ-probabilistic CBF with
confidence β, we have PN (Ct,N ) ≥ 1 − β for all t ∈ [H],
and (15), (16) we have

PN

(
P
( H⋂

t=0

{xt ∈ C}
)
≥ 1− ϵ

)
≥ 1−Hβ.

Now the result follows from the fact that β ≤ β̃
H .

In the rest of the section, we fix δ, β ∈ (0, 1), and consider
a dataset DN of N ∈ N samples as defined in Proposition 6.
The following result establishes a sufficient condition for h
to be a probabilistic CBF with a given confidence in the case
where the random variable ∆h(x,u,d)) is bounded.

Proposition 7. (Hoeffding-based condition): Suppose that
there exist constants a, b, ϵ > 0 with β ≥ 2 exp{− 2Nϵ2

(b−a)2 }
and such that for each x ∈ C and u ∈ Rm, a ≤
∆h(x,u,d) ≤ b almost surely and

1

N

N∑
i=1

∆h(x,u,d(i)) ≥ ϵ+ b(1− δ), (17)

Then, h is a δ-probabilistic CBF with confidence 1− β.

Proof. Let x ∈ C and pick u ∈ Rm so that (17) holds. Note
that such u is dependent on the dataset DN . Now, we have

PN

(∣∣∣E[∆h(x,u,d)]− 1

N

N∑
i=1

∆h(x,u,d(i))
∣∣∣ ≤ ϵ

)
≥ 1− 2 exp

{
− 2Nϵ2

(b− a)2

}
≥ 1− β,

where in the first inequality we have used Hoeffding’s
inequality [39], and in the last inequality we have used
β ≥ 2 exp{− 2Nϵ2

(b−a)2 }. This, together with (17), implies that

PN

(
E[∆h(x,u,d)] ≥ b(1− δ)

)
≥ 1− β.

Now, the result follows from Proposition 2.

Since (17) is derived through Hoeffding’s inequality, we
refer to it as the Hoeffding-based condition.

Remark 3. (Conditions of Proposition 7): A simple scenario
in which a, b as in Proposition 7 exist is if h is uniformly
bounded (which we can always assume without loss of
generality). Moreover, β ≥ 2 exp{− 2Nϵ2

(b−a)2 } holds if N is
sufficiently large. We note that we can also state a version
of Proposition 7 in which the a, b, ϵ,N are dependent on x
and u (instead of being uniform for all x ∈ C and u ∈ Rm).
Although the assumption that a, b, ϵ,N are uniform across
x and u might add some conservatism, it leads to a simpler
dependency on u in (17). In fact, condition (17) is convex in
u under assumptions such as the ones in Remark 1. •

Next we introduce another result that certifies that h is
a probabilistic CBF with a given confidence. In this case,
the result is distribution-free (meaning it holds without any
assumptions on the uncertainty distribution) and uses the
theory of the scenario approach [23].

Proposition 8. (Scenario approach-based condition): Sup-
pose that for each x ∈ C, there exists u ∈ Rm such that

∆h(x,u,d(i)) ≥ 0, i ∈ [N ]. (18)

Further suppose that for each x ∈ C and d ∈ Rd, the
function u → −∆h(x,u,d) is convex and N satisfies

d−1∑
i=0

(
N
i

)
δi(1− δ)N−i ≤ β. (19)

Then, h is a δ-probabilistic CBF with confidence 1− β.

Proof. Let c ∈ Rm and take ux ∈ Rm as a minimizer of
the optimization problem

min
u∈Rm

c⊤u, s.t. ∆h(x,u,d(i)) ≥ 0, i ∈ [N ], (20)

which is feasible by assumption. Now, by [40, Theorem 2.4]
we have that for each x ∈ C,

PN

(
P(∆h(x,u,d) ≤ 0) > δ

)
≤ β.

Equivalently,

PN

(
P(∆h(x,u,d) ≤ 0) ≤ δ

)
≥ 1− β. (21)

Now, note that for any DN , if the event XN defined as
P(∆h(x,u,d) ≤ 0) ≤ δ holds, then the event YN , defined as
P(∆h(x,u,d) ≥ 0) ≥ 1− δ also holds. Hence, PN (YN ) ≥
PN (XN ), and the result follows from (21).

Since condition (18) is derived through the scenario ap-
proach, we refer to it as the scenario-based condition. The
following remark discusses the assumptions in Proposition 8.

Remark 4. (Assumptions of Proposition 8): As mentioned
in [23, Theorem 1], a sufficient condition for (19) to hold
is N ≥ 2

δ

(
ln 1

β + d
)

. Also, although Proposition 8 requires
−∆α to be convex in u, the recent paper [41] shows that a
similar result can be obtained in the non-convex setting. •

Another method to establish a distribution-free guarantee
that h is a probabilistic CBF with a given confidence is
through the theory of conformal prediction [42]. This is
leveraged in the following result.



Proposition 9. (Conformal prediction-based condition): Sup-
pose that for each x ∈ C, there exists u such that

QN = Quantile
1−δ+

√
log(1/β)

2N

(
R(1), . . . , R(N),∞

)
≤ 0,

(22)

with R(i) = −∆h(x,u,d(i)). Then, h is a δ-probabilistic
CBF with confidence 1− β.

Proof. Let x ∈ C and pick u ∈ Rm so that (22) holds.
Note that such u is dependent on the dataset DN . By [42,
Proposition 2a], we have

PN

(
P(−∆h(x,u,d) ≤ QN ) ≥ 1− δ

)
≥ 1− β. (23)

Note that if d ∈ Rd satisfies −∆h(x,u,d) ≤ QN , then we
have −∆h(x,u,d) ≤ 0 by (22). Hence, for any fixed dataset
DN and u satisfying (22), we have

P
(
−∆h(x,u,d) ≤ QN

)
≤ P

(
−∆h(x,u,d) ≤ 0

)
.

Therefore, if the event X̄N defined as P
(
−∆h(x,u,d) ≤

QN

)
≥ 1 − δ holds, then the event ȲN defined as P

(
−

∆h(x,u,d) ≤ 0
)
≥ 1 − δ also holds. Hence, PN (ȲN ) ≥

PN (X̄N ) and by (23) this implies that h is a δ-probabilistic
CBF with confidence 1− β.

Since condition (22) is derived through conformal pre-
diction, we refer to it as the conformal prediction-based
condition. We note that as shown in [43, Section 5], the
quantile constraint (22) can be reformulated using mixed-
integer programming so that it can be used in optimization-
based control design with off-the-shelf solvers.

V. EXPERIMENTAL VALIDATION

In this section we validate our theoretical results by
considering the problem of controlling a quadrupedal robot
traversing a narrow corridor, inspired by [27, Section 5.D].
We consider the following discrete-time dynamics

xk+1 = xk +∆t

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

vxk
vyk
ωk

+ dk,

(24)

where xk = [x, y, θ]⊤ and ∆t > 0. We let h(x) = 0.52−y2.

A. Simulation
In simulation, we model the uncertainties in the terrain

through a Gaussian disturbance with standard deviation σ
acting only in the y direction, i.e., dk = [0, dk, 0], with
dk ∼ N (0, σ). We consider a time horizon of 20 steps
and take δ = 0.1, β = 0.01, α = 0.01 and ∆t = 0.1.
We consider a nominal controller knom(x) = [0.2, 0,−θ].
For each of the different conditions ——Markov (in the
form of (8)), Cantelli, Hoeffding, scenario approach, and
conformal prediction——, we compute the control input at
every state by solving an optimization problem that finds
the closest input to the nominal controller that satisfies the
corresponding condition. We take generate datasets of size
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Fig. 1: (left) Number of unsafe trajectories for different val-
ues of the disturbance variance σ. (right) Number of unsafe
trajectories for different values of the trajectory length. No
filter refers to the implementation of the nominal controller,
whereas Markov, Cantelli, Hoeffding, Scenario, and Con-
formal refer to the approaches in Propositions 2, 7, 8, 9,
respectively.

3252, 113, and 300 for the Hoeffding, scenario, and confor-
mal approaches, respectively. For the Markov, Hoeffding and
scenario approach-based condition, the optimization problem
at every state is a convex quadratically constrained quadratic
program (QCQP), which we solve using the cvxpy library
in Python. The Cantelli-based condition leads to a non-
convex problem, which we solve using the trust region
solver of the minimize function in the SciPy library
in Python. Using the reformulation in [43, Section 5], the
conformal prediction-based method leads to a mixed-integer
quadratically constrained quadratic program, which we solve
using the gurobipy library in Python. We implement each
of the approaches (along with the nominal controller and the
approach based on [27], which we refer to as the Martingale
approach) in 400 different trajectories with initial condition
x0 = [0, 0, 0].

Figure 1 shows the number of unsafe trajectories for
different values of σ (and fixed horizon 20)) and different
time horizon values (and fixed σ). For a fixed time horizon
of 20 Proposition 1 ensures that the probability that the
trajectory is safe over 20 steps is at least (1−δ)20 ≈ 0.12, and
hence the probability that the trajectory is unsafe over these
20 steps is at most 0.88. (for the approaches in Section IV,
this is with confidence 1 − β · 20 = 0.8). As can be seen
in Figure 1, all the approaches considered in this paper lead
to a fraction of unsafe trajectories significantly lower than
the theoretical bound, which suggests that the conditions
might be conservative. The source of this conservatism can
be attributed to the limited knowledge of the uncertainty
distribution, the use of Jensen’s inequality (cf. Corollaries 3
and 5), and the fact that these results do not consider
full trajectory information, and instead derive probabilistic
bounds only based on a condition at every state.

Figure 2 shows 400 different trajectories generated with
the different approaches for σ = 0.06 and trajectory length
20. Note that we do not plot trajectories from the Markov
approach because it is infeasible for such value of σ.

Finally, Table I shows the average execution times for the
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Fig. 2: Evolution of 400 different trajectories with initial condition at x0 = [0, 0, 0] and σ = 0.06 and trajectory length 20
for different methods introduced in the paper, along with the nominal controller (left).

Markov Cantelli Hoeffding Scenario Conformal Martingale
Tex 3.47 3.78 3.89 79.96 5.65 3.46
σ0 0.03 0.16 0.13 0.21 0.2 0.25

TABLE I: Average time it takes to compute the controller
(Tex) in milliseconds and smallest value of σ that leads to
infeasibility σ0 for the different approaches.

Fig. 3: Experimental Setup

different approaches as well as the smallest value of σ that
leads to infeasibility of the corresponding condition.

The choice of which of the different approaches should
be used depends on a variety of factors. Firstly, on what
information is available about the uncertainty distribution.
Secondly, on the desired level of conservativeness with re-
spect to the safety constraints. Figure 1 and Table I show that
there is a tradeoff between the empirical number of safety
violations and the smallest variance that leads to infeasibility.
Approaches yielding less safety violations generally lead to
infeasible conditions for smaller values of σ. Thirdly, another
point to consider is the computational time (cf. Table I).
Although the martingale approach shows a larger value of σ0

in Table I, it fails to meet the prescribed safety guarantees
that the other approaches successfully satisfy.

B. Hardware

To validate the effectiveness of our approach beyond
simulation, we deploy it on a quadruped robot navigating
a challenging obstacle course designed to induce substantial
disturbances. The course is 3m long and 1m wide, with a
laterally slanted wooden ramp covered in slippery plates
(Fig. 3). Our system is a Unitree GO2 quadruped, which
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Fig. 4: Evolution of the value of h for two different trajec-
tories for each of the different approaches considered in the
hardware experiment.

we assume follows dynamics 24. The control objective is
to traverse the course with a nominal forward velocity of
1 m/s 1. We compare three controllers: (i) the nominal
controller with no safety filter, (ii) a naive CBF-based filter,
and (iii) our Hoeffding-based probabilistic CBF filter. For the
latter, we collect disturbance data from 5000 rollout steps on
the course to characterize the uncertainty. We use the same
h as in simulation, and estimate the global state of the robot
by an external OptiTrack system. Results are shown in Fig.
4. We plot the trajectories induced by the nominal controller,
the naive filter (i.e., the controller that is computed at each
state as the smallest deviation from the nominal satisfying
the discrete-time CBF condition assuming the disturbance
is identically zero), and the Hoeffding-based approach. The
nominal controller and the naive filter consistently violate
the safety constraint as the sloped terrain pushes the robot
laterally out of the safe set. In contrast, our Hoeffding-based
filter substantially reduces the frequency and magnitude of
constraint violations, correctly accounting for the stochastic
disturbance and succeeding on 4/5 of the tested rollouts.

VI. CONCLUSION

We have introduced probabilistic CBFs, which can be
used to design controllers that satisfy safety constraints
with a prescribed probability over a finite time horizon.
We have proposed a number of different sufficient condi-
tions to verify that a function is a probabilistic CBF. The
first set of conditions leverage knowledge of the moments

1Video of the experiment: https://youtu.be/Lu9tl-teSLc



of the uncertainty distribution, whereas the second set of
conditions utilize realizations of the uncertainty. We have
studied the computational tractability of such conditions
for its use in optimization-based control. In particular, we
have implemented such controllers on a quadruped, both in
simulation and hardware. In future work, we plan to find
less conservative conditions to ensure that a function is a
probabilistic CBF and bridge the gap between the theoretical
probabilistic safety guarantees and the empirical results. The
results in this paper also open the door to the design of safe
controllers in systems with state estimation errors induced
by techniques such as the Kalman Filter or SLAM.
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