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Abstract

Recent interest in first-order optimization algorithms has lead to the for-
mulation of so-called high-resolution differential equations, continuous surro-
gates for some of the classical discrete-time optimization algorithms exhibit-
ing acceleration. The continuous setting allows the use of some powerful and
well-established tools, like Lyapunov functions. This framework can be used
to gain some intuition into the still somewhat mysterious phenomenon of ac-
celeration. In this work we study these high-resolution differential equations
and the crucial problem of re-discretizing them while maintaining their rate
of convergence. We also review a recent paper that proposes a discretization
technique by using ideas borrowed from event-triggered control and suggest
some improvements on those algorithms in terms of their rate of convergence.

Keywords: First-Order Optimization, Event-Triggered Control, Nes-
terov’s Accelerated Method, Estimating Sequences, High-Resolution Differ-
ential Equations
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Chapter 1

Introduction

Optimization has always been at the core of most of the applications of
mathematics. In the last decade, Machine Learning and Deep Learning have
become the major areas of application of optimization. The types of problems
where Machine Learning and Deep Learning are applied are diverse, but all
have a common denominator: the requirement to deal with large amounts of
data. This demand has direct implications on the types of algorithms that
can be implemented. Not only do they have to be fast, meaning that they
have to reach the optimum with the least number of iterations possible, but
also efficient, in terms of the amount of storage used.
The above requirements have lead researchers to work in a the framework of
first-order optimization methods.
This means that at each iteration the algorithm can only use the gradient
and the value of the objective function at the point where the algorithm
finds itself. No more higher-order information is considered. In particular,
this means that common optimization algorithms, like Newton’s Method, are
out of the scope of this framework.
First-order algorithms allow the storage capabilities to be relatively small,
since the gradient of a multivariate function grows linearly with respect to the
dimension of the variable to be optimized, whereas the Hessian, for instance,
grows quadratically. Throughout this thesis we are going to work in this
first-order framework.
We will be considering unconstrained minimization problems:

min
x∈Rn

f(x)

where f is a smooth convex (or strongly-convex) function.
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The most common first-order method is gradient descent, which leverages
the intuition that the direction in which f will decrease the most is that of its
gradient. Due to its simplicity, gradient descent (and specially its stochastic
version, Stochastic Gradient Descent) is still one of the most widely used
methods in the optimization community.
The first improvement on gradient descent dates back to Polyak [13], who pre-
sented the heavy-ball method, which introduces what is known as a momen-
tum term to the gradient step. The term momentum comes from an analogy
from physics, since the added term is proportional to the velocity that a hy-
pothetical particle following that trajectory would have. Polyak’s heavy-ball
is only provably faster than gradient descent locally (with quadratic worst-
case convergence rate), but it can even fail to converge globally for certain
functions. When a certain first-order optimization algorithm has a better
convergence rate than gradient descent we say that it has acceleration.
The next major breakthrough in first-order optimization was due to Nes-
terov [11], who leveraged the momentum ideas from Polyak and developed a
method which is faster than gradient descent globally. Moreover, he devel-
oped a technique known as estimating sequences to prove that his algorithm
was optimal among first-order methods. Nesterov’s estimating sequences are
often seen as obscure and relying on an algebraic trick. With the recent inter-
est on first-order optimization methods, researchers have been trying to gain
a better, more intuitive understanding of the phenomenon of acceleration.
We will review all of these algorithms and their convergence properties in
Chapter 2.
In chapters 4 and 5 we will explore a recent body of work, which uses dif-
ferential equations that are continuous counterparts of the discrete-time op-
timization algorithms described above. This translation enables the use of
some of the well-known powerful tools of the analysis of nonlinear systems,
like Lyapunov functions. The most relevant line of research for us is the one
initiated in [17], which introduces a second-order differential equation which
is the continuous-time limit of Nesterov’s accelerated gradient method, and
further expanded in [5], where high-resolution differential equations were in-
troduced. These are a more accurate continuous-time limit of the heavy-ball
and Nesterov methods.
A pivotal question to understand acceleration with which researchers have
recently been struggling is that of discretizing these differential equations
while maintaining their convergence properties. Numerous discretizations
have been tried. In [8] it is shown that high-order Runge Kutta integrators
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can be used to discretize Nesterov’s continuous model and still retain ac-
celeration. In [4], explicit Euler, implicit Euler and symplectic integrators
are applied to the high-resolution differential equations and the properties
of these discretizations are analyzed. In Chapter 6 we introduce a technique
taken from [16] to discretize the heavy-ball high-resolution differential equa-
tion by using event-triggered control (the basic ideas behind it are introduced
at Chapter 3). We build on the Lyapunov functions used on previous works to
identify triggering conditions that determine the next stepsize as a function
of the current iterate. By design, these triggers ensure that the discretization
retains the decay rate of the Lyapunov function in the continuous dynamics.
In Chapter 7 we build on the approach developed in Chapter 6 to introduce
three novel directions via which the convergence-rate of the triggered dynam-
ics can be improved. Some theoretical results and simulations showing this
improvement are presented.
Finally, Chapter 8 presents a continuous-time analogue of the estimating
sequences technique introduced by Nesterov and we try to analyze the phe-
nomenon of acceleration from that perspective.
Chapter 6 is the central one in this thesis. The chapters before it can be
thought of as a review of the literature necessary to understand it and the
chapters after it are build upon the ideas introduced in it.

7



Chapter 2

Classical Convex Optimization
Algorithms

2.1 The gradient method

In the following we study the convergence properties of the most popular
convex optimization algorithm: gradient descent. We follow the exposition
in [12].
Let us introduce the space of differentiable convex functions with L-Lipschitz
continuous gradient, which we denote by F 1,1

L . If f ∈ F 1,1
L (Rn) then the

following inequalities hold for all x, y ∈ Rn:

〈∇f(x)−∇f(y), x− y〉 ≥ 0

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖

Let’s recall the Gradient (or Gradient Descent) Method to solve the fol-
lowing problem:

min
x∈Rn

f(x)
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Algorithm 0: Gradient Method

Initialization: Initial point (x0 ∈ Rn), objective function (f),
tolerance (ε), stepsizes {hk}k∈N.;
Set: k = 0;
while ‖∇f(x)‖ ≥ ε do

Compute f(xx) and ∇f(xk) ;
Compute next iterate according xk+1 = xk − hk∇f(xk) ;
Set k = k + 1

end

Now we focus on the case hk = h > 0 ∀k. Let x∗ be the optimizer. Then:

Theorem 1 ([12]). Let f ∈ F 1,1
L (Rn) and 0 < h < 2

L
. Then the Gradient

Method generates a sequence of points xk with function values satisfying:

f(xk)− f(x∗) ≤
2(f(x0)− f(x∗)) ‖x0 − x∗‖2

2 ‖x0 − x∗‖2 + kh(2− Lh)(f(x0)− f(x∗))

∀k ≥ 0

Proof. Let rk = ‖xk − x∗‖. Then:

r2k+1 = ‖xk − x∗ − h∇f(xk)‖2

= r2k − 2h〈∇f(xk), xk − x∗〉+ h2 ‖∇f(xk)‖2

≤ r2k − h(
2

L
− h) ‖∇f(xk)‖2

where we have used property 7 of 41 from Appendix A. Therefore, rk ≤ r0
Now, by using property 3 of 41 from A we have:

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+
L

2
‖xk+1 − xk‖2

= f(xk)− h(1− L

2
h) ‖∇f(xk)‖2

By convexity:

f(xk)− f(x∗) ≤ 〈∇f(xk), xk − x∗〉〈r0 ‖∇f(xk)‖

After some algebraic manipulation we get:

1

f(xk+1)− f(x∗)
≥ 1

f(x0)− f(x∗)
+
h(1− L

2
h)

r20
(k + 1)

which is equivalent to the statement of the theorem.
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Remark 1. In order to choose the optimal step size, we need to maximize
the function φ(h) = h(2 − Lh) with respect to h. It’s easy to check that
the maximum is achieved for h = 1

L
. In this case, we get the following

convergence rate:

f(xk)− f(x∗) =
2L(f(x0)− f(x∗)) ‖x0 − x∗‖2

2L ‖x0 − x∗‖2 + k(f(x0)− f(x∗)

Let us estimate now the performance of the Gradient Method on the class
of strongly convex functions.

We denote by S 1,1
µ,L the class of µ-strongly convex functions with L-

Lipschitz-continuous gradients, i.e, functions that satisfy:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2

Theorem 2 ([12]). If f ∈ S 1,1
µ,L and 0 < h < 2

h+L
then the Gradient Method

generates a sequence xk such that:

‖xk − x∗‖2 ≤ (1− 2hµL

µ+ L
)k ‖x0 − x∗‖2

If h = 2
µ+L

(the case for which we reach the highest rate of convergence),
then

‖xk − x∗‖ ≤ (
Qf − 1

Qf + 1
)k ‖x0 − x∗‖

f(xk)− f(x∗) ≤
L

2
(
Qf − 1

Qf + 1
)2k ‖x0 − x∗‖2

where Qf = L
µ

is the so-called conditioning number of f

Proof. Let rk = ‖xk − x∗‖. Then:

r2k+1 = ‖xk − x∗ − h∇f(xk)‖2 = r2k − 2h〈∇f(xk), xk − x∗〉+ h2 ‖∇f(xk)‖2

≤ (1− 2hµL

µ+ L
)r2k + h(h− 2

µ+ L
) ‖∇f(xk)‖2

where we have used the following inequality, the proof of which is pre-
sented in A

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L
‖x− y‖2 +

1

µ+ L
‖∇f(x)−∇f(y)‖2
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2.2 Polyak’s Heavy-Ball method

The first improvement to the Gradient Method dates back to Polyak [13],
who realized that the convergence can be improved by adding information
about previous steps. The heavy-ball method incorporates a momentum term
to the gradient step, and the iterates become:

xk+1 = xk − α∇f(xk) + β(xk − xk−1) (2.1)

where α, β > 0 are the stepsize and momentum coefficients, respectively.

Polyak was able to prove, via an eigenvalue argument, that for quadratic
functions the rate of convergence improves upon gradient descent. He was
also able to prove that the rate of local convergence near the objective func-
tion’s minimum is better than gradient descent. Nevertheless, Polyak was
unable to extend the argument globally. In fact, there exist examples in the
literature where the method even fails to converge. In subsection 2.3 we will
take a look at one of those examples.

Next we outline the proof that Polyak’s method is faster than gradient
descent in the case of quadratic objectives. The proof is essentially the same
as the way Polyak presented it in [13] but is extracted from [14]. Assume we
aim to minimize f : Rn → R given by

f(x) =
1

2
xTAx− bTx+ c

where A is an n × n positive definite matrix, b is a vector and c is a
constant. We assume that µI � A � LI

The heavy-ball updates can be given in matrix form by:[
xk+1 − x∗
xk − x∗

]
=

[
(1 + β)I − αA −βI

I 0

] [
xk − x∗
xk−1 − x∗

]
Hence, ∥∥∥∥[xk+1 − x∗

xk − x∗

]∥∥∥∥ =
∥∥T k∥∥∥∥∥∥[x1 − x∗x0 − x∗

]∥∥∥∥
where

T =

[
(1 + β)I − αA −βI

I 0

]
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So it suffices to bound the norm of T k to get a convergence rate. To do
so, we use the following result from matrix analysis:

Proposition 3. Let M be an n× n matrix. Let {λi(M)} be its eigenvalues.
Let ρ(M) = maxi |λi(M)|. Then there exists a sequence of εk ≥ 0 such that:∥∥Mk

∥∥ ≤ (ρ(M) + εk)
k

and limk→∞ εk = 0.

Proposition 4. For β ≥ max{|1−√αµ|, |1−
√
αL|}, ρ(T ) ≤ β

Proof. Let UΛUT be an eigendecomposition of A. Let Π be the 2n × 2n
matrix with entries:

Πi,j =


1 i odd, j = i

1 i even, j = 2n+ i

0 otherwise

Then,

Π

[
U 0
0 U

]T [
(1 + β)I − αA −βI

I 0

] [
U 0
0 U

]
ΠT

= Π

[
(1 + β)I − αΛ −βI

I 0

]
ΠT

=


T1 0 . . . 0
0 T2 . . . 0
...

. . .
...

0 0 . . . Tn


Where

Ti =

[
1 + β − αλi −β

1 0

]
Hence, T is similar to the block diagonal matrix with 2×2 diagonal blocks

Ti. So to compute the eigenvalues of T it suffices to compute the eigenvalues
of all the Ti. The eigenvalues of Ti are the solutions of

u2 − (1 + β − αλi)u+ β = 0
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It can be shown that if β ≥ (1 −
√
αλi)

2, the roots of the characteristic
equations are imaginary with magnitude β. Also note that

(1−
√
αλi)

2 ≤ max{(1−√αµ)2, (1−
√
αL)2}

and therefore setting β = max{(1 − √αµ)2, (1 −
√
αL)2} the proof is

complete.

In order to find the best possible convergence rate we need to find an
α that minimizes max{(1 − √αµ)2, (1 −

√
αL)2}. This happens when (1 −

√
αµ)2 = (1−

√
αL)2, cf 2.1. We get α = 4

(
√
L+
√
µ)2

and β =
√
L−√µ√
L+
√
µ
.

Figure 2.1: minα{max{(1−√αµ)2, (1−
√
αL)2}}

which leads the following convergence rate:

‖xk − x∗‖ ≤ (

√
L−√µ
√
L+
√
µ

+ εk)
kD0

where limk→∞ = 0 and D0 is a constant that depends on the initial
conditions.
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2.2.1 Simulations

In the following figure we can see that after running 7 iterations of both
Polyak’s heavy-ball and Gradient Descent for the objective f(x1, x2) = 5x21 +
x22 the former is much closer to the optimizer (the origin) than the latter:

Figure 2.2: Iterates of Gradient Descent and Polyak’s heavy-ball for the
objective f(x1, x2) = 13x21 + 2x22

2.2.2 Failing Case of Polyak’s Momentum

In their 2015 paper, Lessard et al. [9] were able to come up with a convex
function and specific hyperparameters of the heavy-ball algorithm for which
the algorithm fails to converge.
Let f be defined by its gradient by:

∇f(x) =


25x ifx < 1

x+ 24 if1 ≤ x < 2

25x− 24 otherwise

We are not going to get into the technicalities of the proof of why this
particular function doesn’t converge if we follow Polyak’s heavy-ball method,
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but the basic idea is that the iterates get stuck into a limit cycle. Figure 2.3
shows this behavior.

Figure 2.3: Value of f in terms of the number of iteration

2.3 Nesterov’s accelerated gradient

In the last section we saw that Polyak’s algorithm can fail to converge for
some convex functions. Leveraging the idea of momentum introduced by
Polyak, Nesterov [11] introduced an algorithm that also presents acceleration
and moreover converges for general convex functions:

yk+1 = xk − α∇f(xk)

xk+1 = yk+1 + β(yk+1 − yk)

where α and β are hyperparameters of the algorithm.
We can rewrite the iteration in terms of only xk:

xk+1 = xk + β(xk − xk−1)− α∇f(xk + µ(xk − xk−1)

Comparing with Equation 2.1, we see that Polyak’s method evaluates the
gradient before adding momentum while Nesterov’s method evaluates it after
adding momentum.

For µ-strongly convex functions with L-Lipschitz gradient, Nesterov con-
siders the algorithm with α = s, β =

1−√µs
1+
√
µs

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√µs
1 +
√
µs

(yk+1 − yk)

15



starting from x0 and x1 = x0− 2s∇f(x0)
1+
√
µs

and s satisfying 0 ≤ s ≤ 1/L. Nes-

terov proves that this algorithm achieves an accelerated linear convergence
rate:

f(xk)− f(x∗) ≤ O
(

1−√µs)k
)

For (weakly) convex functions, Nesterov considers the algorithm with
α = s and β = k

k+3

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
k

k + 3
(yk+1 − yk)

with x0 = y0 ∈ Rn and s satisfying 0 ≤ s ≤ 1/L. Nesterov proves the
following convergence rate:

f(xk)− f(x∗) ≤ O(
1

sk2
)

Nesterov’s proofs of accelerated convergence rates are often regarded as
obscure and relying on algebraic tricks, and to the present day there is no
clear intuition on why the hyperparameter selection done above leads to
acceleration. Here we will briefly outline the ideas behind those proofs, which
can be found extensively in [12]. The core concept behind those proofs is that
of estimating sequence, which we define next:

Definition 5. A pair of sequences {φk(x)}∞k=0 and {λk}∞k=0, λk ≥ 0 are called
estimating sequences of the function f if

λk → 0

and for any x ∈ Rn and all k ≥ 0 we have

φk(x) ≤ (1− λk)f(x) + λkφ0(x)

The next lemma explains the motivation of such definition:

Lemma 6 ([12]). If for some sequence of points {xk} we have:

f(xk) ≤ φ∗k
def
= min

x∈Rn
φk(x) (2.2)

then f(xk)− f(x∗) ≤ λk(φ0(x∗)− f(x∗))→ 0

16



Proof.

f(xk) ≤ φ∗k = min
x∈Rn

φk(x) = min
x∈Rn

(
(1− λk)f(x) + λkφ0(x)

)
≤ (1− λk)f(x∗) + λkφ0(x∗)

Hence, for any sequence {xk}, we can derive its rate of convergence from
the sequence {λk}. Before we are able to do that, though, we face two prob-
lems: how to form the estimating sequences and how to satisfy the inequality
2.2.

Nesterov gives a recursive way to find an estimating sequence:

Lemma 7 ([12]). Assume that:

• f is a function belonging to the class S 1,1
µ,L,

• φ0 is an arbitrary convex function on Rn,

• {yk}∞k=0 is an arbitrary sequence of points in Rn

• the coefficients {αk}∞k=0 satisfy conditions αk ∈ (0, 1) and
∑∞

k=0 αk =∞

• we choose λ0 = 1

Then the pair of sequences {φk}∞k=0 and {λk}∞k=0, defined recursively by
the relations

λk+1 = (1− αk)λk
φk+1(x) = (1− αk)φk(x) + αk

(
f(yk) + 〈∇f(yk), x− yk〉+

µ

2
‖x− yk‖2

)
(2.3)

are estimating sequences

The above lemma allows us to update the estimating sequences in terms
of an arbitrary sequence of points and an arbitrary sequence of coefficients
(satisfying the conditions outlined). Note that we are also free to choose
the initial function φ0(x). The following lemma establishes that if we choose
φ0(x) of a particular form, then the φk(x) have a canonical form for all k
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Lemma 8 ([12]). Let φ0(x) = φ∗0 + γ0
2
‖x− v0‖2. Then the process 2.3 pre-

serves the canonical form of functions {φk(x)}:

φk(x) ≡ φ∗k +
γk
2
‖x− vk‖2

where the sequences {γk}, {vk} and {φ∗k} are defined as follows:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1

(
(1− αk)γkvk + αkµyk − αk∇f(yk)

)
φ∗k+1 = (1− αk)φ∗k + αkf(yk)−

α2
k

2γk+1

‖∇f(yk)‖2

+
αk(1− αk)γk

γk+1

(µ
2
‖yk − vk‖2 + 〈∇f(yk), vk − yk〉

)
By having the φk defined that way, we are closer to getting an algorithmic

scheme. Suppose, for induction’s sake, that we already have xk satisfying:

φ∗k ≥ f(xk)

Our goal is to define an xk+1 such that φ∗k+1 ≥ f(xk+1) Then, by Lemma
8,

φ∗k+1 ≥ (1− αk)f(xk) + αkf(yk)−
α2
k

2γk+1

‖∇f(yk)‖2

αk(1− αk)γk
γk+1

〈∇f(yk), vk − yk〉

Since f is convex, f(xk) ≥ f(yk) + 〈∇f(yk), xk−yk〉, we get the following
estimate:

φ∗k+1 ≥ f(yk)−
α2
k

2γk+1

‖∇f(yk)‖2

+ (1− αk)〈∇f(yk),
αkγk
γk+1

(vk − yk) + xk − yk〉

Recall that we want to ensure φ∗k+1 ≥ f(xk+1). Recall also that we can
ensure the inequality

f(yk)−
1

2L
‖∇f(yk)‖2 ≥ f(xk+1)
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by taking the gradient step

xk+1 = yk −
1

L
∇f(yk)

Define αk as the positive root of the quadratic

Lα2
k = (1− αk)γk + αkµ = γk+1

Then
α2
k

2γk+1
= 1

2L
and we can replace the previous inequality by the fol-

lowing one:

φ∗k+1 ≥ f(xk+1) + (1− αk)〈∇f(yk),
αkγk
γk+1

(vk − yk) + xk − yk〉

Now let’s choose yk so that the extra term on the right hand side vanishes:

αkγk
γk+1

(vk − yk) + xk − yk = 0

which leads to yk = αkγkvk+γk+1xk
γk+αkµ

The discussion we have just outlined is formalized in the following algo-
rithm, which is often called the Fast Gradient Method

Algorithm 1: Estimating Sequences Algorithm

Initialization: Initial point (x0 ∈ Rn), some γ0 > 0 and v0 = x0 ;
Set: k = 0;
while ‖∇f(xk)‖ ≥ ε do

Compute αk ∈ (0, 1) from the equation Lα2
k = (1− αk)γk + αkµ;

Set γk+1 = (1− αk)γk + αkµ ;

Choose yk = αkγkvk+γk+1xk
γk+αkµ

. Compute f(yk) and ∇f(yk);

Find xk+1 such that f(xk+1) ≤ f(yk)− 1
2L
‖∇f(yk)‖2 (for example

by setting xk+1 = yk − 1
L
∇f(yk));

Set vk+1 = 1
γk+1

(
(1− αk)γkvk + αkµyk − αk∇f(yk)

)
;

Set k = k + 1
end

From the discussion we did and 2.2 the following theorem follows:

Theorem 9. Algorithm 1 generates a sequence of points {xk} such that

f(xk)− f(x∗) ≤ λk

(
f(x0)− f(x∗) +

γ0
2
‖x0 − x∗‖2

)
where λ0 = 1 and λk =

∏k−1
i=0 (1− αi)
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Thus, in order to estimate the rate of convergence of algorithm 1 we need
to understand how quickly the sequence {λk} approaches zero. The following
lemma characterizes this:

Lemma 10. If in the algorithm 1 we choose γ0 ∈ (µ, 3L + µ], then for all
k ≥ 0 we have

λk ≤
4µ

(γ0 − µ)(
(
exp(k+1

2
q
1/2
f )− exp(−k+1

2
q
1/2
f )
)

)2
≤ 4L

(γ0 − µ)(k + 1)2

where qf = µ
L

.

In particular, for γ0 = µ, λk = (1−√qf )k, k ≥ 0

Remark 2. It should be noted that Nesterov actually proves that the rates
given in Lemma 10 are optimal for first order methods, i.e, methods that at
each iteration only have access to the value of the function and the gradient
of the function. We are not going to get into the details of such a proof, but
all the details can be found at [12]

The only question that still remains to be solved by this point is how does
Nesterov’s algorithm as presented in the beginning of this section relate to
algorithm 1. In the following we delve into this issue.

Consider a variant of scheme 1 which uses a constant gradient step for
finding the point xk+1, so that xk+1 = xk − 1

L
∇f(xk). Under this update, it

can be shown that algorithm 1 is equivalent to the following one, in which
sequences vk and γk have been eliminated.

If we choose α0 =
√
qf (this corresponds to γ0 = µ). Then, ∀k ≥ 0

αk =
√
qf

βk =
1−√qf
1 +
√
qf

which yields Nesterov’s algorithm for strongly convex functions as we
presented it in the beginning of the section.
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Algorithm 2: Estimating Sequences Algorithm Constant Stepsize

Initialization: Initial point (x0 ∈ Rn), some α0 ∈ (0, 1) and y0 = x0 ;
Set: k = 0;
while ‖∇f(xk)‖ ≥ ε do

Compute f(yk) and ∇f(yk).;
Set xk+1 = yk − 1

L
∇f(yk) ;

Compute αk+1 ∈ (0, 1) from the equation

α2
k+1 = (1− αk+1)α

2
k + qfαk+1

Set βk = αk(1−αk)
α2
k+αk+1

;

Set yk+1 = xk+1 + βk(xk+1 − xk) ;
Set k = k + 1

end

2.3.1 Simulations

In the following figure we can see that after running 7 iterations of both Nes-
terov’s Accelerated Gradient method and Gradient Descent for the objective
f(x1, x2) = 5x21 + x22 the former is much closer to the optimizer (the origin)
than the latter:
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Figure 2.4: Iterates of Gradient Descent and Nesterov’s Accelerated Gradient
for the objective f(x1, x2) = 13x21 + 2x22
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Chapter 3

Event-Triggered Control

In this chapter we introduce the basics of event-triggered control, which will
be applied to optimization algorithms.
The basic idea of event-triggered control is to use aperiodic sampling/control
instead of periodic or continuous sampling/control. Instead of continuously
or periodically monitoring the state of a control system, the basic assump-
tion behind event-triggered control is that maybe it is more efficient to only
do so sporadically, when a certain triggering condition is violated (we will
define this notion formally later on). The fundamental challenge is to deter-
mine precisely when control signals should be updated to improve efficiency
while still guaranteeing a desired quality of service (which in practice means
satisfying a certain Lyapunov decay). The following exposition is based in
[6], which is a tutorial on Event-Triggered Control applied to the problem
of multi-agent consensus. Although we will use it for a completely different
problem, the basic concepts still apply.

3.1 What is Event-Triggered Control?

Given a control system in Rn of the form

ẋ = F (x, u)

with an unforced equilibrium at x∗, (i.e., F (x∗, 0) = 0), assume we have:

• a continuous-time controller k : Rn → Rm
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• a certificate of the correctness of the continous-time controller in the
form of a Lyapunov function V : Rn → R

The previous two points are equivalent to saying that the system ẋ =
F (x, k(x)) makes x∗ asymptotically stable, and this fact can be guaranteed
by using V as a Lyapunov function.
The idea of event-triggered control is not to continuously update the con-
troller k(x) (as this is infeasible in real life) but rather use a sampled version
x̂ of the state and update it as k(x̂). The question is if we can guarantee
(through V ) that the sampled controller still stabilizes the system. We also
need to find a systematic way to determine the times when the controller
must be updated.
By using the sampled controller the closed-loop system is given by:

ẋ = F (x, k(x̂))

More specifically, letting {tl}l∈N be the sequence of event times at which
the control input is updated,

u(t) = k(x̂(t))

where

x̂(t) = x(tl) for t ∈ [tl, tl+1)

Also note that V̇ = ∇V (x)F (x, k(x̂)). Moreover, if F is uniformly (in
x) Lipschitz in its second argument, k is Lipschitz and ∇V is bounded, the
following inequality holds:

V̇ ≤ ∇V (x)F (x, k(x)) +G(x) ‖e‖ (3.1)

for some function G taking nonnegative values, and where e = x̂ − x is
the error between the sampled and the actual state.

Since V is a Lyapunov function for the system ẋ = F (x, k(x)), the first
term on the inequality is negative. To ensure that V̇ ≤ 0, we can prescribe a
triggering condition that resamples the state whenever the first and second
terms of the inequality are equal.
In general, a triggering condition is encoded via a triggering function f , which
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evaluates whether a given state x and error e combination should trigger an
event or not. We define the triggering condition as:

f(e, w) = g(e)− h(w) = 0 (3.2)

where g : Rn → R≥0 is a nonnegative function of the error with g(0) = 0
and h ∈ R≥0 is a threshold function that may depend on the state x, the
sampled state x̂ and time t. When the triggering condition is satisfied, the
state is resampled, and the error e is reset to zero. The event times are thus
defined as:

tl+1 = min{t′ ≥ tl | f(e(t
′
, w(t

′
)) = 0} (3.3)

It is easy to see from equation 3.1 that the functions g and h are given
by:

g(e) = ‖e‖

h(x) =
|∇V (x)F (x, k(x))|

|G(x)|

By applying the aforementioned triggering condition we can ensure:

V̇ ≤ ∇V (x)F (x, k(x)) +G(x) ‖e‖ ≤ 0

at all times. This implies that x asymptotically approaches x∗ as long as
the sequence of event times tends to infinity. We formalize this last condition
in the following section:

3.2 Zeno behavior

From the discussion we have made in the previous section we know that by
following the triggering condition we can ensure that the Lyapunov func-
tion is decreasing for all times where the triggering condition is satisfied. It
might happen, however, that at some point the times for which the triggering
condition is true become arbitrarily close together and the trajectory of the
system gets stuck at some point. This is of course an undesirable property in
real-life applications, since that would means that the system doesn’t reach
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the desired equilibrium. The following definition describes the absence of
this behavior:

Definition 11. (Zeno behavior) Given the closed-loop dynamics ẋ = F (x, k(x̂))
driven by 3.3, a solution with initial condition x(0) = x0 exhibits Zeno be-
havior if ∃ T > 0 such that tl ≤ T ∀l ∈ Z≥0

In other words, if the event-triggered controller defined by the triggering
condition requires an infinite number of events happening in a finite time
interval, then the solution exhibits Zeno behavior.
Note also that for a system not to exhibit Zeno behavior, we require solutions
for all initial conditions not to have Zeno behavior.
Being able to rule out Zeno behavior is fundamental when it comes to vali-
dating the correctness of a given event-triggered controller, because for real
world applications it is impossible to update a controller infinitely many
times in a bounded period of time.
In practical applications, it might sometimes be hard to prove that a sys-
tem doesn’t exhibit Zeno behavior by proving that the event times aren’t
uniformly upper bounded. Instead, it might be useful to prove that another
quantity, called the inter-event time, is positively lower bounded. I.e, proving
that ∃ τmin such that:

tl+1 − tl ≥ τmin > 0

∀ l ∈ N. It is clear that this condition is stronger than the lack of Zeno
behavior, since

tl+1 − tl ≥ τmin > 0⇒ tl > lτmin + τ0

⇒ lim
l→∞

tl =∞

But it isn’t equivalent to it, as the following counterexample shows:

Example 1. Consider tl =
∑l

k=0
1
k
. Since the harmonic sum diverges,

liml→∞ tl = ∞, but on the other hand, tl+1 − tl = 1
l+1

isn’t positively lower
bounded.

This sufficient condition for Zeno behavior will be extensively used in
chapters 6 and 7.
Note that even though an Event-Triggered scheme doesn’t require to update
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the controller continuously, in order to know when to update it, we have to
continuously monitor the triggering condition in order to check when it stops
being true. Since such a continuous surveillance is again impossible in the
real world, in actual applications this condition is monitored periodically.
If defines an implicit equation, an alternative is to solve it numerically by
making use of the extensive arsenal of numerical methods used to mind the
zeros of nonlinear equations. In the particular case where we can explicitly
solve this equation, the controller is known as self-triggered. We will find
examples of each type throughout the thesis.
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Chapter 4

Differential Equations for
Optimization Algorithms

In this chapter we will review some of the recent attempts to find an in-
tuitive understanding of acceleration of optimization algorithms from the
continuous-time perspective.
It should be noted that there is a long history relating ordinary differen-
tial equations (ODEs) to optimization. This connection is often obtained
by taking increasingly small step sizes so that the points generated by the
algorithm converge to a curve modeled by an ODE. By using well-established
techniques from ODEs, like Lyapunov theory, many interesting results have
been obtained. [7] is a book completely devoted on the topic.

4.1 A Simple Example: Linear Convergence

of Gradient Descent via Lyapunov Func-

tions

In this section we show, via a simple example, how the continuous-time limit
of an optimization algorithm can be useful in deriving some of its properties.
We will consider the most simple out of all first-order optimization algo-
rithms: gradient descent:

xk+1 = xk − s∇f(xk)
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where s is the so-called step size. By making s arbitrarily small we end
up with the following differential equation:

ẋ+∇f(x) = 0

which is often known as the gradient flow of f .
In Chapter 2 we prove how this optimization scheme has a convergence rate
for convex functions of O(1/k). Here we will prove, via a Lyapunov function
approach, that the solutions of the gradient flow converge to the optimum
of f at a rate of O(1/t).

Consider the following functional:

V (t) = t(f(x(t))− f(x∗)) +
1

2
‖x(t)− x∗‖2

Let’s calculate the derivative of the functional along the solutions of ẋ+
∇f(x) = 0

V̇ = f(x(t))− f(x∗)− t ‖∇f(x(t))‖2 + 〈x(t)− x∗,−∇f(x(t))〉

Recall that if f is convex, the following inequality is true:

f(x∗) ≥ f(x(t)) + 〈∇f(x(t)), x− x(t)〉

Therefore, V̇ ≤ 0 along the solutions of the gradient flow. This implies:

V (t) ≤ V (0) =
1

2
‖x(0)− x∗‖2 (4.1)

⇒ t(f(x(t))− f(x∗)) +
1

2
‖x(t)− x∗‖2 ≤

1

2
‖x(0)− x∗‖2 (4.2)

⇒ t(f(x(t))− f(x∗)) ≤
1

2
‖x(0)− x∗‖2 (4.3)

Which leads to the desired convergence rate:

f(x(t))− f(x∗) ≤
‖x(0)− x∗‖2

2t

It is also possible to discretize the functional V and adapt the proof in
discrete time to find an alternative proof of the O(1/k) convergence rate of
the Gradient Descent Algorithm.
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4.2 A Differential Equation for Modeling Nes-

terov’s Accelerated Gradient Method

Su et al.[17] applied the same ideas to find a differential equation that is
the continuous-time limit of Nesterov’s Accelerated Gradient scheme. As a
byproduct of the derived ODE, a family of schemes with similar convergence
rates was found, and some qualitative understanding on the trajectories of
Nesterov’s scheme was gained.

4.2.1 Deriving the ODE

Recall that Nesterov’s scheme for convex functions relies on two sequences,
whose updates are given by:

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + 2
(xk − xk−1)

Combining the two equations:

xk+1 − xk√
s

=
k − 1

k + 2

xk − xk−1√
s

−
√
s∇f(yk) (4.4)

Introduce the ansatz xk ≈ X(k
√
s) for some smooth curve X(t) defined

for t ≥ 0. Then, as the step size s tends to zero, Taylor expansion gives:

xk+1 − xk√
s

= Ẋ(k
√
s) +

1

2
¨X(k
√
s)
√
s+ o(

√
s)

xk − xk−1√
s

= Ẋ(k
√
s)− 1

2
¨X(k
√
s)
√
s+ o(

√
s)

Note also that

yk = xk +
k − 1

k + 2
(xk − xk−1) (4.5)

X(k
√
s) +

k − 1

k + 2
(X(k

√
s)−X((k − 1)

√
s)) = X(k

√
s) + o(

√
s) (4.6)

and hence,
√
s∇f(yk) =

√
s∇f(X(t)) + o(

√
s) and 4.4 can be written as:
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Ẋ(t)+
1

2
Ẍ(t)

√
s+o(

√
s) = (1−3

√
s

t
)(Ẋ(t)−1

2

. . .X(t)
√
s+o(

√
s))−

√
s∇f(X(t))+o(

√
s)

(4.7)

By comparing the cofficients of
√
s in 4.7 we obtain:

Ẍ +
3

t
Ẋ +∇f(X) = 0 (4.8)

with initial conditions which can be shown to be X(0) = x0 and Ẋ(0) = 0

4.2.2 Initial Asymptotic

If Nesterov’s scheme is implemented, one observes that it seems to move
slowly in the beginning, and only after a certain amount of time has passed,
the algorithm presents acceleration. We can get some insights on why this
phenomenon happens by analyzing the ODE 4.8.
Assume X is smooth enough so that limt→0 Ẍ exists. By the mean value

theorem there exists some ξ ∈ (0, t) that satisfies Ẋ(t)−Ẋ(0)
t

= Ẍ(ξ). From
the ODE:

Ẍ(t) + 3Ẍ(ξ) +∇f(X(t)) = 0

Taking the limit t→ 0 we get Ẍ(0) = −∇f(x0)
4

and for small t the solution
takes the following form:

X(t) = −∇f(x0)t
2

8
+ x0 + o(t2)

which is an asymptotic expansion consistent with the empirical observa-
tion that Nesterov’s scheme moves slowly for the first iterations.

4.2.3 Analogous Convergence Rate

Let’s start this subsection by introducing a uniqueness result for 4.8:

Theorem 12 ([17]). For any f ∈ F∞ := ∪L>0FL and any x0 ∈ Rn, the
ODE 4.8 with initial conditions X(0) = x0, Ẋ(0) = 0 has a unique global
solution X ∈ C2((0,∞);Rn) ∩ C1([0,∞);Rn)
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Recall that the original result from Nesterov (1983) states that for any
function f with Lipschitz-continuous gradient, the iterates of Nesterov’s Ac-
celerated Gradient (for convex functions) with step size s ≤ 1/L satisfies:

f(xk)− f(x∗) ≤
2 ‖x0 − x∗‖2

s(k + 1)2

Just like what we did previously for Gradient Descent, the next result
indicates that the trajectory of 4.8 converges to the minimizer to the same
rate in continuous time, i.e, f(X(t))− f(x∗) = O( 1

t2
)

Theorem 13 ([17]). For any f ∈ F∞, let X(t) be the unique global solution
to 4.8 with initial conditions X(0) = x0, Ẋ(0) = 0. Then, for any t > 0,

f(X(t))− f(x∗) ≤
2 ‖x0 − x∗‖2

t2

Proof. Consider the functional defined by

V (t) = t2(f(X(t))− f(x∗)) + 2
∥∥∥X + tẊ/2− x∗

∥∥∥2
Its time derivative is given by:

V̇ = 2t(f(X)− f(x∗)) + t2〈∇f, Ẋ〉+ 4
〈
X +

t

2
Ẋ − x∗,

3

2
Ẋ +

t

2
Ẍ
〉

Substituting 3Ẋ/2 + tẌ/2 with −t∇f(X)/2, the time derivative yields:

V̇ = 2t(f(X)− f(x∗))− 2t〈X − x∗,∇f(X)〉 ≤ 0

where the last inequality follows from the convexity of f . Thus,

f(X(t))− f(x∗) ≤
V (t)

t2
≤ V (0)

t2
=

2 ‖x0 − x∗‖2

t2
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4.2.4 A Phase Transition

One of the things that might seem strange from 4.8 is the constant 3 ap-
pearing in the coefficient of Ẋ. Su et al.[17] prove that this constant can be
replaced by any larger number and the O(1/k2) convergence rate is main-
tained. I.e, the differential equation

Ẍ +
r

t
Ẋ +∇f(X) = 0

with initial conditions X(0) = x0, Ẋ(0) = 0 has a phase transition for
r = 3, meaning that for r ≥ 3 a convergence rate of O( 1

k2
and for r < 3 the

convergence is O( 1
k
)

For the discrete algorithm, this translates to saying that the scheme

xk = yk−1 − s∇f(yk−1)

yk = xk +
k − 1

k + r − 1
(xk − xk−1)

has quadratic convergence only for r ≥ 3.

4.3 Differential Equations for Nesterov’s Ac-

celerated Gradient and Polyak’s Heavy

Ball for strongly convex functions

One of the points that remains obscure from the exposition on 2 is why Nes-
terov’s Accelerated Gradient achieves accelerated global convergence whereas
for Polyak’s heavy-ball we can only guarantee this result locally.
If we write Nesterov’s algorithm for strongly convex function in single-variable
form:

xk+1 = xk +
1−√µs
1 +
√
µs

(xk − xk−1)− s∇f(xk)−
1−√µs
1 +
√
µs
s(∇f(xk)−∇f(xk−1))

starting from x0 and x1 = x0 − 2s∇f(x0)
1+
√
µs

, we see that the heavy-ball method

and Nesterov’s Accelerated Gradient are identical except for the last term,
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−
1−√µs
1 +
√
µs
s(∇f(xk)−∇f(xk−1))

the gradient correction.
Even though the estimating sequence technique used by Nesterov delivers
a proof of acceleration, it does not explain why the absence of the gradient
correction prevents the heavy-ball method from achieving acceleration for
strongly-convex functions.
We would have hope that the continuous setting would shed some light into
this issue. Unfortunately, if one follows an analogous derivation to the one we
did in 4.2.1, with heavy-ball for Nesterov’s Accelerated Gradient for Strongly-
Convex functions, one finds that the resulting ODE is the same in both cases:

Ẍ(t) + 2
√
µẊ(t) +∇f(X(t)) = 0

And therefore, this ODE doesn’t provide any insight into why the two
algorithms behave differently.
In the work [5], with the goal of finding a different ODE for each scheme, the
concept of high-resolution differential equations is introduced, which will be
the main topic of the next chapter.

34



Chapter 5

High Resolution Differential
Equations

As we pointed out in the previous chapter, a simple continuous-time limit
of Nesterov’s Accelerated Gradient for strongly-convex functions yields the
same ODE as the continuous time limit of Polyak’s heavy-ball for strongly-
convex functions.
However, just as there is not a single preferred way to discretize a differen-
tial equation, there is not a preferred way to take a continuous-time limit
of a difference equation. Inspired by a common technique used in fluid dy-
namics, in which physical phenomena are studied at different scales via the
inclusion of various orders of perturbations, the authors in [5] propose to
incorporate O(

√
s) terms into the limiting process for obtaining the ODE.

This results in what they call high-resolution differential equations, which
are able to differentiate between the Nesterov Accelerated Gradient (NAG)
methods and the heavy-ball method. In section 5.1 we show how to derive
these high-resolution differential equations. Next, in section 5.2 we provide
convergence rates of the solutions of these high-resolution differential equa-
tions. Finally, in section 5.3 we try to translate these convergence rates to
the actual discrete-time algorithms we described in Chapter 2. Along the
line, we will find some interesting insights on the difference between these
two methods.

35



5.1 Deriving High-Resolution ODEs

We will start by deriving the high-resolution differential equation for Nes-
terov’s Accelerated Gradient for Strongly-Convex functions.
Just like in the low-resolution derivation made in [17], our focus is on the
single-variable form of the scheme:

xk+1 = xk+
1−√µs
1 +
√
µs

(xk−xk−1)−s∇f(xk)−
1−√µs
1 +
√
µs
s(∇f(xk)−∇f(xk−1))

(5.1)
Let tk = k

√
s and assume there exists a sufficiently smooth curve X(t)

such that xk = X(tk). Performing a Taylor expansion in powers of
√
s, we

get:

xk+1 = X(tk+1) = X(tk) + Ẋ(tk)
√
s+

1

2
Ẍ(tk)(

√
s)2 +

1

6

...
X(tk)(

√
s)3 +O((

√
s)4)

xk−1 = X(tk−1) = X(tk)− Ẋ(tk)
√
s+

1

2
Ẍ(tk)(

√
s)2 − 1

6

...
X(tk)(

√
s)3 +O((

√
s)4)

A Taylor expansion for the gradient correction term is the following:

∇f(xk)−∇f(xk−1) = ∇2f(X(tk))Ẋ(tk)
√
s+O(

√
s)2

Substituting into 5.1 and ignoring O(s) terms but retaining O(
√
s) we

obtain the following high-resolution differential equation for Nesterov’s Ac-
celerated Gradient for strongly-convex functions:

Ẍ + 2
√
µẊ +

√
s∇2f(X)Ẋ + (1 +

√
µs)∇f(X) = 0 (5.2)

with initial conditions which can be shown to be

X(0) = x0

Ẋ(0) = −2
√
s∇f(x0)

1 +
√
µs

By following a similar derivation the high-resolution differential equation
for the heavy-ball method can be shown to be:

Ẍ(t) + 2
√
µẊ(t) + (1 +

√
µs)∇f(X(t)) = 0 (5.3)
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with X(0) = x0 and Ẋ(0) = −2
√
s∇f(x0)
1+
√
µs

.

Analogously, the high-resolution ODE for Nesterov’s Accelerated Gradi-
ent for convex functions can be shown to be:

Ẍ(t) +
3

t
Ẋ(t) +

√
s∇2f(X(t))Ẋ(t) + (1 +

3
√
s

2t
)∇f(X(t)) = 0 (5.4)

for t ≥ 3
√
s/2, with X(3

√
s/2) = x0 and Ẋ(3

√
s/2) = −

√
s∇f(x0).

Remark 3. Note that all the high-resolution differential equations reduce to
their low-resolution counterparts introduced in chapter 4 in the limit s→ 0,
as expected.

Remark 4. From the derivation we have made for 5.2, the contribution
of the gradient correction term in the high-resolution ODE is

√
s∇2f(X)Ẋ.

Hence, viewing the coefficient of Ẋ as a damping ratio, the coefficient 2
√
µ+√

s∇2f(X) of Ẋ in the high-resolution ODE 5.2 is adaptive of the posi-
tion X, in contrast to the fixed damping ratio 2

√
µ for the heavy-ball high-

resolution ODE 5.3. To appreciate the effect of this adaptivity, suppose that
Ẋ is highly correlated with an eigenvector of ∇2f(X) with a large eigenvalue
(and therefore, if we follow this direction we expect a big decrease in the ob-
jective function). Then, the friction increases and decelerates the trajectory
of the solution of 5.2. This property is desirable because a small step in the
presence of high curvature (directions correlated with large eigenvalues of the
Hessian) generally avoids big oscillations. This lack of big oscillations is
one of the differences that can be observed experimentally between Polyak’s
heavy-ball and Nesterov’s Accelerated Gradient and that gives the latter an
advantage for certain objective functions.

5.2 Convergence: the Continuous Case

Now that we have different high-resolution differential equations for the dif-
ferent optimization methods, we will state a set of theorems that characterize
their convergence properties and how to translate them to the discrete case.
We will not state existence and uniqueness results for the high-resolution dif-
ferential equations presented above. From now on, we will assume that we
have existence and uniqueness of solutions for all of them under the condi-
tions stated in the theorems that we present next:

37



Theorem 14 ([5]). (Convergence of 5.2). Let f ∈ S 2
µ,L(Rn). For any step

size 0 ≤ s ≤ 1/L, the solution X = X(t) of the high-resolution ODE 5.2
satisfies:

f(X(t))− f(x∗) ≤
2 ‖x0 − x∗‖2

s
e−

√
µt

4

The next lemma states the key property used in the proof of the previous
theorem:

Lemma 15. (Lyapunov function for 5.2) Let f ∈ S 2
µ,L(Rn). For any step

size s > 0, and with X = X(t) being the solution to 5.2, the Lyapunov
function

V (t) = (1 +
√
µs)(f(X)− f(x∗) +

1

4

∥∥∥Ẋ∥∥∥2 +
1

4

∥∥∥Ẋ + 2
√
µ(X − x∗) +

√
s∇f(X)

∥∥∥2
satisfies

dV (t)

dt
≤ −
√
µ

4
V (t)−

√
s

2

[
‖∇f(X(t))‖2 + Ẋ(t)T∇2f(X(t))Ẋ(t)

]
Note that in particular, dV (t)

dt
< 0, because f is convex and therefore the

Hessian is positive definite.
Now we state the same type of result for the high-resolution Heavy-Ball ODE:

Theorem 16 ([5]). (Convergence of 5.3)
Let f ∈ S 2

µ,L(Rn). For any step size 0 < s ≤ 1/L, the solution X = X(t)
of the high-resolution ODE 5.3 satisfies

f(X(t))− f(x∗) ≤
7 ‖x0 − x∗‖2

2s
e−

√
µt

4

Just like before, the result is based on the following key lemma:

Lemma 17. (Lyapunov function for 5.3) Let f ∈ S 2
µ,L(Rn). For any step

size s > 0, the Lyapunov function

V (t) = (1 +
√
µs)(f(X)− f(x∗) +

1

4

∥∥∥Ẋ∥∥∥2 +
1

4

∥∥∥Ẋ + 2
√
µ(X − x∗)

∥∥∥2
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satisfies:

dV (t)

dt
≤ −
√
µ

4
V (t)

5.3 Convergence: the Discrete Case

In this section we rewrite the results from the previous section in the discrete
case. This will be done by discretizing the Lyapunov functions derived in 5.2.
This discretization can often be tricky, and the details can be found at [5].
Overall, we are able to derive convergence results we already knew from 2,
but which will now be proven via a Lyapunov perspective.

Theorem 18 ([5]). (Convergence of Nesterov’s Accelerated Gradient method
for strongly-convex functions) Let f ∈ S 2

µ,L(Rn). If the step size is set to
s = 1

4L
, the iterates {xk}∞k=0 generated by Nesterov’s Accelerated Gradient

method for strongly-convex functions satisfy:

f(xk)− f(x∗) ≤
5L ‖x0 − x∗‖2

1 + 1
12

√
µ/L

for all k ≥ 0

Theorem 18 is proven by using a result that relates the rate of decay of
the discrete-time Lyapunov function (recall that the derivative in discrete
time translates to the difference of the value of the function between two
timesteps, V (k + 1)− V (k).

Lemma 19 ([5]). Let f ∈ S 2
µ,L(Rn). Taking any step size 0 < s ≤ 1

4L
, the

discrete Lyapunov function

V (k) =
1 +
√
µs

1−√µs
(f(xk)− f(x∗)) +

1

4
‖vk‖2 +

1

4

∥∥∥∥vk +
2
√
µ

1−√µs
(xk+1 − x∗) +

√
s∇f(xk)

∥∥∥∥2
− s ‖∇f(xk)‖2

2(1−√µs)

satisfies:

V (k + 1)− V (k) ≤ −
√
µs

6
V (k + 1)
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Now we state the same results for the heavy-ball method.

Theorem 20 ([5]). (Convergence of the heavy-ball method). Let f ∈ S 2
µ,L(Rn).

If the step size is set to s = µ
16L2 , the iterates {xk}∞k=0 generated by the heavy-

ball method satisfy:

f(xk)− f(x0) ≤
5L ‖x0 − x∗‖2

(1 + µ
16L

)k

for all k ≥ 0

The theorem relies on this lemma:

Lemma 21. Let f ∈ S 2
µ,L(Rn). For any step size s > 0, the discrete Lya-

punov function

V (k) =
1 +
√
µs

1−√µs
(f(xk)− f(x∗)) +

1

4
‖vk‖2 +

1

4

∥∥∥∥vk +
2
√
µ

1−√µs

∥∥∥∥2
satisfies

V (k + 1)− V (k) ≤ −√µsmin{
1−√µs
1 +
√
µs
,
1

4
}V (k + 1)

−
[3
√
µs

4
(
1 +
√
µs

1−√µs
)(f(xk+1)− f(x∗))−

s

2
(
1 +
√
µs

1−√µs
)2 ‖∇f(xk+1)‖2

]
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Chapter 6

Discretizing High Resolution
Differential Equations: an
event-triggered approach

In this chapter we are gong to use the high-resolution differential equations
introduced in the Chapter 5 to find new discrete-time optimization algo-
rithms. To do so, we are going to discretize these differential equations by
using event-triggered control ideas introduced in Chapter 3.
It must be said beforehand that since high-resolution differential equations
were introduced in [5], a number of works have also explored the discretiza-
tion of accelerated continuous models. The work [1] shows that the forward
Euler method can be inefficient and even become unstable after a few itera-
tions. In [8], it is shown that high-order Runge-Kutta integrators can also be
used to retain acceleration when discretizing the low-resolution differential
equation for Nesterov’s method for convex functions. The paper [4] ana-
lyzes the properties of explicit, implicit and symplectic integrators for the
high-resolution differential equations for the heavy-ball method and NAG for
strongly-convex functions.
The work presented in this chapter is mainly taken from [16].

6.1 Forward-Euler Discretization of Dynam-

ical Systems via State-Triggered Control

Consider a dynamical system on Rn,
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ṗ = Y (p) (6.1)

where Y : Rn → Rn. Assume p∗ is a globally asymptotically stable
equilibrium point under this dynamics, and a Lyapunov function V : Rn → R
is available to guarantee it. Assume V decreases at a rate according to:

V̇ = 〈∇V (p), Y (p)〉 ≤ −αV (p)

for all p ∈ Rn. Obviously the system 6.1 doesn’t have a control, but
we will apply the same ideas discussed in Chapter 3. Instead of sampling
the control and keeping it constant until a triggering condition is violated,
we will sample the state and keep it constant until a triggering condition is
violated. Consider the sampled implementation of 6.1 given by:

ṗ = Y (p̂) (6.2)

with p(0) = p̂. Solving the differential equation:

p(t) = p̂+ tY (p̂)

Note that this can be though as the Forward (or Explicit) Euler discretiza-
tion of 6.1 with stepsize t. This is an interesting observation on its own:
variable-stepsize Euler discretizations are equivalent to the State-Triggered
implementation of a dynamical system.

To find the time we have to do the next sampling (or equivalently, the
stepsize), assume we have access to a continuous function g : Rn × R → R
that satisfies g(p, 0) < 0 for all p ∈ Rn\{p∗} and

V̇ (p(t)) + αV (p(t)) ≤ g(p̂, t) (6.3)

is satisfied along the solutions of 6.2. Then, for each i ∈ N, the dynamics
are given by

ṗ = Y (pi), p(0) = pi (6.4)

p(t) = pi + tY (pi) (6.5)
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and the next triggering time can be determined by:

ti+1 = min{t|t > ti such that g(pi, t) = 0} (6.6)

Figure 6.1: Equivalence between an state-triggered implementation and
variable-stepsize explicit Euler. The black lines correspond to the trajectories
of the original dynamics 7.10. The red lines correspond to the trajectories of
the sampled implementation 6.2

Note that overall, 6.4 can be thought of as a hybrid system, i.e, a dy-
namical system where the vector field describing its dynamics changes from
time to time (in our case, this change occurs when the triggering condition
is violated).
Note that by construction we have V̇ (p(t)) ≤ −αV (p(t)) along the dynam-
ics 6.4. Just like we mentioned in Chapter 3, if g is such that ti+1 can be
determined explicitly only with knowledge of pi and it does not require the
continuous monitoring of p, one refers to this design as self-triggered.

6.2 Triggered Discretization of the Heavy Ball

Continuous Model

Here we will derive a discretization, using the methodology described in the
previous section, of the high-resolution differential equation for the heavy-ball
method 5.3. A similar discussion can be made for the rest of high-resolution
differential equations presented in chapter 5, but will not be included here
due to space constrains. We refer the interested reader to the supplementary
material from [16].

Let f ∈ S 1
µ,L. We restart by rewriting the recond order differential equa-

tion 5.3 as a system of first order differential equations:
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[
ẋ
v̇

]
=

[
v

−2
√
µv − (1 +

√
µs)∇f(x))

]
, (6.7)

with initial conditions x(0) = x0, v(0) = −2
√
s∇f(x0)
1+
√
µs

. We refer to this

dynamics as Xhb.

We know from theorem 16 that there exists a Lyapunov function V pos-
itive definite with respect to [x∗, 0] satisfying V̇ (p(t)) ≤ −

√
µ

4
V (p(t)) along

the dynamics 6.7. As a consequence, [x∗, 0] is globally asymptotically stable.
Thus, we have all the necessary ingredients to develop a state-triggered dis-
cretization that preserves the convergence rate, like the one described in the
previous section.
The only obstacle is the fact that the Lyapunov function depends on the
optimizer, which in an optimization problem is unknown, so we want to find
a bounding function g(p̂, t) that doesn’t depend on the optimizer and that
satisfies:

V̇ (p(t)) + αV (p(t)) ≤ g(p̂, t) (6.8)

g(p̂, 0) < 0 (6.9)

We will do so by using the convexity properties of the function f . The
next proposition defines such a g

Proposition 22 ([16]). For the sample-and-hold dynamics ṗ = Xhb(p̂),
p(0) = p̂, s ≥ 0 and 0 ≤ α ≤ √µ/4, let

d
dt
V (p(t)) + αV (p(t))

= 〈∇V (p̂+ tXhb(p̂)), Xhb(p̂)〉+ αV (p̂+ tXhb(p̂))

= 〈∇V (p̂+ tXhb(p̂))−∇V (p̂), Xhb(p̂)〉︸ ︷︷ ︸
I

+α(V (p̂+ tXhb(p̂))− V (p̂))︸ ︷︷ ︸
II

+ 〈∇V (p̂), Xhb(p̂)〉+ αV (p̂)︸ ︷︷ ︸
III

.

Then, the following bounds hold:

1. Term I ≤ AET (p̂) ≤ AST (p̂)t;
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2. Term II ≤ BCET (p̂, t) ≤ BST (p̂)t+ CST (p̂)t2;

3. Term III ≤ DET (p̂, t) = DST (p̂),

where p̂ = [x̂, v̂] and

AET (p̂, t) = (1 +
√
µs)〈∇f(x̂+ tv̂)−∇f(x̂), v̂〉+ 2µt ‖v̂‖2

+ 2
√
µ(1 +

√
µs)〈∇f(x̂), v̂〉+ t(1 +

√
µs)2 ‖∇f(x̂)‖2

BCET (p̂, t) = α(1 +
√
µs)(f(x̂+ tv̂)− f(x̂)) + t2

α

4
‖−2
√
µv̂ − (1 +

√
µs)∇f(x̂)‖2

− αt(1 +
√
µs)〈v̂,∇f(x̂)〉 − t√µ ‖v̂‖2

+ t2
α

4
‖(1 +

√
µs)∇f(x̂)‖2 − αt√µ(1 +

√
µs) ‖∇f(x̂)‖2 /L

DET (p̂) = (
3α

4
−√µ) ‖v‖2 +

((1 +
√
µs)

α−√µ
2L

+ (α2µ−
√
µ(1 +

√
µs)µ

2
)

1

L2
) ‖∇f(x̂)‖2

AST (p̂) = (1 +
√
µs)L ‖v̂‖2 + 2

√
µ(1 +

√
µs)〈∇f(x̂), v̂〉+

2µ ‖v̂‖2 + (1 +
√
µs)2 ‖∇f(x̂)‖2

BST (p̂) = −α√µ ‖v̂‖2 −
α
√
µ(1 +

√
µs)

L
‖∇f(x̂)‖2

CST (p̂) = α(1 +
√
µs)

L

2
‖v̂‖2 +

α

4
‖−2
√
µv̂ − (1 +

√
µs)∇f(x̂)‖2

+
α

4
(1 +

√
µs)2 ‖∇f(x̂)‖2

The proof of this proposition can be found at the supplementary material
for [16].

Now we can define:

gET = AET (p̂, t) +BCET (p̂, t) +DET (p̂, t)

gST = CST (p̂)t2 + (AST (p̂) +BST (p̂))t+DST (p̂)

With these functions defined and from Proposition 22 the following bounds
hold:

d

dt
V (p(t)) + αV (p(t)) ≤ gET (p̂, t) ≤ gST (p̂, t) (6.10)
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Now the stepsize starting from p̂ is calculated by:

step#(p̂) = min
t
{t > 0 such that g#(p̂, t) = 0} (6.11)

where # ∈ {ET, ST}.

Note that gET (p̂, t) = 0 is an implicit equation on t (hence the subscript,
event-triggered). Instead gST (p̂, t) is a quadratic equation and can thus be
solved explicitly with knowledge only of the current state p̂ (hence the sub-

script, self-triggered). Moreover, since DST (p̂) < 0 when α ≤
√
µ

4
, there is

always only one positive solution given by:

stepST (p̂) =
−(AST (p̂) +BST (p̂) +

√
(AST (p̂) +BST (p̂))2 − 4CST (p̂)DST (p̂))

2CST (p̂)
(6.12)

The resulting state-triggered algorithm is given as follows:

Algorithm 3: Triggered Forward-Euler algorithm

Initialization: Initial point (p0), convergence rate (α), objective
function (f), tolerance (ε) ;
Set: k = 0;
while ‖∇f(x)‖ ≥ ε do

Compute stepsize tk at current point according to 6.11 ;
Compute next iterate pk+1 = pk + tkXhb(pk);
Set k = k + 1

end

The MATLAB code for algorithm 3 is included in Appendix C. The fol-
lowing theorem states that this algorithm satisfies the two conditions that
any event-triggered algorithm must satisfy: non-Zeno behavior and desired
decay of the Lyapunov function:

Theorem 23 ([16]). For 0 ≤ α ≤ √µ/4 and # ∈ {ET, ST}, Algorithm 3 is
a variable-stepsize integrator with the following properties:

(i) the stepsize is uniformly lower bounded by a positive constant. Namely

−c̄2 +
√
c̄22 + c̄1 ≤ stepST (p)

where
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c̄1 = min{
2(
√
µ− 3α

4 )

α(4µ+ L
√
µs+ L)

,
2(−4αµ+ L(

√
µ− α)(

√
µs+ 1) + µ3/2(

√
µs+ 1))

3αL2(
√
µs+ 1)2

}

c̄2 = max{
(2µ+

√
µ+ L)(

√
µs+ 1)

α(4µ+ L
√
µs+ L)

,
2(
√
µ+
√
µs+ 1)

3α(
√
µs+ 1)

}

(ii) d
dt
V (pk + tXhb(pk) ≤ −αV (pk + tXhb(pk)) for all t ∈ [0, tk] and all

k ∈ {0} ∪ N

As a consequence,

f(xk+1)− f(x∗) ≤
7 ‖x(0)− x∗‖2

2s
e−α

∑k
i=0 ti

for all k ∈ {0} ∪ N

Proof. Since gET (p, t) ≤ gST (p, t) we have stepST (p) ≤ stepET (p) and there-
fore it is enough to prove the first claim for the self-triggered case. We start
by rewriting 6.12 like this:

stepST (p) = −AST (p) +BST (p)

2CST (p)
+

√(AST (p) +BST (p)

2CST (p)

)2
− DST (p)

CST (p)

We will start by showing that DST (p)
CST (p)

is uniformly lower bounded in p.

Bound, using ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2:

CST (p) ≤ α
(

(1 +
√
µs)

L

2
+ 2µ

)
‖v‖2 + α

3

4
(1 +

√
µs)2 ‖∇f(x)‖2

and therefore

−DST (p)

CST (p)
≥

(3α4 −
√
µ) ‖v‖2 +

(
(1 +

√
µs)

α−√µ
2L + (α2µ−

√
µ(1+

√
µs)µ

2 ) 1
L2

)
‖∇f(x̂)‖2

α
(

(1 +
√
µs)L2 + 2µ

)
‖v‖2 + α3

4(1 +
√
µs)2 ‖∇f(x)‖2
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By renaming ‖∇f(x)‖ = z1 and ‖v‖ = z2 the last expression takes the
form

β1z
2
1 + β2z

2
2

β3z21 + β4z22
(6.13)

It can be shown by elementary calculus that this function is upper and
lower bounded (a proof of this result can be found at the supplementary
material of [16]). I.e, there exist positive constants c1 and c2 such that:

0 < c1 ≤
β1z

2
1 + β2z

2
2

β3z21 + β4z22
≤ c2 for all z1, z2 ∈ R\{0} (6.14)

Thus,

−(AST (p) +BST (p))

2CST (p)
+

√
(
AST (p) +BST (p)

2CST (p)
)2 + c1 ≤ stepST (p)

Now it is easy to see that the function f(z) = −z +
√
z2 + c1 is mono-

tonically decreasing and positive everywhere. If we can prove that z =
AST (p)+BST (p)

2CST
is upper bounded, then f(z) is lower bounded by a positive

constant. To achieve it, let’s use:

CST (p) ≥ α
(

(1 +
√
µs)

L

2
‖v‖2 +

(1 +
√
µs)2

4
‖∇f(x)‖2

)
and

AST (p) +BST (p) ≤ AST (p) ≤ (1 +
√
µs)L ‖v‖2 +

√
µ(1 +

√
µs) ‖∇f(x)‖2

√
µ(1 +

√
µs) ‖v‖2 + 2µ ‖v‖2 + (1 +

√
µs)2 ‖∇f(x)‖2

where we have used Cauchy-Schwartz

〈a, b〉 ≤ ‖a‖ ‖b‖

and Young’s inequality

ab ≤
√
a2 + b2

2
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for the last estimate. Now, the fraction AST (p)+BST (p)
2CST

has the form 6.13 so it
is upper bounded.
It should be noted that the values c̄1 and c̄2 given in the statement of the the-
orem can be calculated by using the explicit values for c1 and c2 in 6.14 given
in the supplementary material for [16]. The second part of the statement of
the theorem follows by construction.

Corollary 24. Let the stepsize tk be lower bounded by t̂ for all k ∈ N. Then,

f(xk+1)− f(x∗) ∈ O(exp(−
√
µ

4
t̂)k)

Proof. Follows immediately from the second part of theorem 23

Even though we don’t observe acceleration in simulations like 6.4, i.e,
exp(−

√
µ

4
t̂) > 1−

√
µ

L
, this might be because of the simplicity of the integra-

tor used. In Chapter 7 we will suggest some modifications on 3 that lead to
improved convergence rates.

It should be noted that the same triggered discretizations can be ap-
plied to the high-resolution differential equation for Nesterov’s Accelerated
Gradient.[

ẋ
v̇

]
=

[
v

−2
√
µv −

√
s∇2f(x)v − (1 +

√
µs)∇f(x))

]
, (6.15)

with initial conditions x(0) = x0, v0 = −2
√
s∇f(x0)
1+
√
µs

. A detailed description

of a self-triggered algorithm for 6.15 can be found in the supplementary
material for [16]. Furthermore, the authors show in a simulation that the
triggered discretizations might be better than the symplectic and implicit
Euler discretizations derived in [4].

6.2.1 Simulations

The next simulation shows how the Event-Triggered implementation is more
accurate than the Self-Triggered Implementation for a fairly well-conditioned
function:
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Figure 6.2: Value of f(x, y) = 3x2 + y2 in terms of the number of iterations
for the event-triggered version of 3 and the self-triggered version of 3 with
initial conditions x0 = [1121, 2333] and v0 = −0.0456∇f(x0)

For more ill-conditioned objectives the two approaches tend to be very
similar, as the next simulation shows:

Figure 6.3: Value of f(x, y) = 10x2+0.1y2 in terms of the number of iterations
for the event-triggered version of 3 and the self-triggered version of 3 with
initial conditions x0 = [201, 304] and v0 = −0.0456∇f(x0)

The following simulation shows that algorithm 3 doesn’t seem to achieve
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acceleration.

Figure 6.4: Value of f(x, y) = 3x2 + y2 in terms of the number of iterations
for the event-triggered version of algorithm 3 and the self-triggered version
of algortihm 3 and Polyak’s Heavy-Ball method
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Chapter 7

Some Improvements on
Event-Triggered Algorithms

This chapter builds on the discretization method introduced in Chapter 6.
Namely, we will show how to improve it in three different (but potentially
compatible) directions:

(i) Different triggering conditions, to which section 7.1 is dedicated,

(ii) Alternative sampling procedures, which will be explored in section 7.2,

(iii) Considering a more exact dynamics, in 7.4

At this point it should be stated that proving theoretically that any of
the algorithms that will be presented below are strictly better (i.e, have a
strictly better convergence rate) than algorithm 3 is a tough problem, be-
cause even though for the same initial conditions one of the algorithms might
take a provably longer step (which might seem to lead to a better convergence
rate), the new initial conditions that result from taking a more cautious step
might be benefitial in the future. In other words, by the time this thesis
is being written, we don’t know whether a greedy strategy like the one fol-
lowed in 3 (where we try to take the longest possible step before violating
the triggering condition) is the optimal strategy for triggered discretization
algorithms.
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7.1 Performance-Based Trigger

In Chapter 6 we used what is known as the derivative-based trigger. This
means that the condition

V̇ + αV ≤ 0 (7.1)

is satisfied by the triggered dynamics (with α ∈ [0,
√
µ/4]) and the trig-

gering condition is defined by an upper bound of 7.1.

It’s easy to see by the Comparison Lemma that condition 7.1 implies:

V (p(t)) ≤ e−αtV (p(0)) (7.2)

which can also be used as a triggering conditon by itself and is known as
the performance-based trigger.

Remark 5. If we construct an even-triggered algorithm that satisfies 7.2, we
get a convergence rate on the objective function given by:

f(x(t))− f(x∗) ≤ V (p(t)) ≤ e−αtV (p(0)) = O(e−αt)

and applying the same inequality piece-wise, we get:

f(xk+1)− f(x∗) = O(e−α
∑k
i=0 ti)

Remark 6. The performance-based triggering condition is weaker than the
derivative-based one, which means that the performance-based trigger might
lead to better discretizations, because it might provide larger stepsizes and
still maintain the required convergence rates.

We will now derive a series of conditions which are equivalent to the
performance-based trigger.

V (p(t)) ≤ e−αtV (p(0))

⇔ V (p(t))− e−αtV (p(0)) ≤ 0

⇔ eαtV (p(t))− V (p(0)) ≤ 0.

Writing the first addend as the integral of its derivative plus its initial
value, we get:
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∫ t
0

d
dτ

(eατV (p(τ)))dτ + e0tV (p(0))− V (p(0))

=
∫ t
0
eαταV (p(τ)) + eαt〈∇V (p(τ)), Xhb(p(τ))〉dτ

=
∫ t
0
eατ (〈∇V (p(τ)), Xhb(p(τ))〉+ αV (p(τ))︸ ︷︷ ︸

Derivative-based

dτ.
(7.3)

Once again we have the same problem as when we tried to evaluate the
derivative-based condition: the triggering condition depends on the optimizer
x∗, which is unknown, so we will try to find an upper bound which is indepen-
dent of x∗. In this case, we can use the upper bound for the derivative-based
condition derived in chapter 6:

∫ t

0
eατ (〈∇V (p(τ)), Xhb(p(τ))〉+ αV (p(τ))︸ ︷︷ ︸

Derivative-based

dτ ≤
∫ t

0
eατgET (p̂, τ) ≤

∫ t

0
eατgST (p̂, τ)

where gET (p̂, t) and gST (p̂, t) are the ones defined in Chapter 6.

Since gST (p, t) is a second-order polynomial, we can compute the integral∫ t
0
eατgST (p̂, τ)dτ explicitly:∫ t

0
eατ (aτ 2 + bτ + c)dτ

= [eαt( a
α
t2 + ( b

α
− 2a

α2 )t+ c
α
− b

α2 + 2a
α3 )]t0

= eαt( a
α
t2 + ( b

α
− 2a

α2 )t+ c
α
− b

α2 + 2a
α3 )− ( c

α
− b

α2 + 2a
α3 )

The formula for the next time we need to update the control is given by:

ti+1 = min{t | t > ti such that

∫ t

0

eαtg#(p, t) = 0}.

where # ∈ {ET, ST}. Which leads to the obvious definition of the stepsize,

stepP#(p) = min
t
{
∫ t

0

eατg#(p, τ)dτ = 0} (7.4)

where # ∈ {ET, ST}. Finally, we introduce the corresponding algorithm.
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Algorithm 4: Performance-Based Algorithm

Initialization: Initial point (p0), convergence rate (α), objective
function (f), tolerance (ε);
Set: k = 0;
while ‖∇f(x)‖ ≥ ε do

Compute stepsize tk according to (7.4);
Compute next iterate pk+1 = pk + tkXhb(pk);
Set k = k + 1

end

Next we state the equivalent of Theorem 23 of Chapter 6 for Algorithm
4:

Theorem 25. For 0 ≤ α ≤
√
µ

4
and # ∈ {ET, ST}, Algorithm 4 is a variable

stepsize integrator with the following properties

(i) the stepsize is uniformly lower bounded by a positive constant;

(ii) V (pk+1) ≤ e−αtV (pk) for all k ∈ {0} ∪ N.

As a consequence, it follows that f(xk+1)− f(x∗) = O(e−α
∑k
i=0 ti).

Proof. We show that stepPST(p) is lower bounded and the remaining results
follow easily (because stepPET(p) is lower bounded by stepPST(p)). Our argu-
ment relies on the observation that stepST(p) ≤ stepPSP (p), where stepST(p)
is the step taken in the self-triggered case of algorithm 3. Recall that this
stepsize is defined by

stepST(p) = min
t
{gST(p, t) = 0}.

In Theorem 23 it has been shown that stepST is positively lower bounded.
To see stepST(p) ≤ stepPSP (p) we depict in Figure 7.1 the behavior of gST(p, t)
and eαtgST(p, t)
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Figure 7.1: Comparison between gST(p, t) and eαtgST(p, t).

This implies that
∫ stepST(p)

0
eαtgST(p, t)dt is negative. It is easy to see that∫ t

0
eατgST(p, τ)dτ is an increasing function for t ≥ stepST(p) taking the deriva-

tive. Since d/dt
∫ t
0
eατgST(p, τ)dτ = eαtgST(p, t) we observe that stepST(p) is

precisely the critical point of
∫ t
0
eατgST(p, τ)dτ . Therefore, the solution of the

performance-based triggering condition has to be bigger than stepST(p). In
Figure 7.2 we illustrate the behavior of the function

∫ t
0
eατgST(p, τ)dτ .

Figure 7.2: Plot of the function
∫ t
0
eατgST(p, τ)dτ .

Remark 7. Even though we will not prove it here, we will state, for com-
pleteness, that it is possible to show that the performance-based trigger is
actually strictly better than the performance-based trigger, i.e, there exists
ε > 0 such that

56



stepPST (p)− stepST (p) ≥ ε.

Intuitively this makes sense, because the critical point of
∫ t
0
eατgST(p, τ)dτ

cannot be its zero if the function takes initially negative values.

7.1.1 Simulations

Here we include some simulations that show the improvement of the performance-
based algorithm with respect to the derivative-based one. In both cases we
assume the objective is quadratic so that we can easily compute L and µ.
The MATLAB code used for these simulations is included in Appendix C.
For the first case we observe only a slight improvement. In the second case
the function is ill-conditioned and the improvement of the performance-based
trigger with respect to the derivative-based one increases over time.

Figure 7.3: Value of f(x) = 5x2 +
y2 in terms of the number of iter-
ations for the derivative-based algo-
rithm and the performance-based al-
gorithm

Figure 7.4: Value of f(x, y) =
134x2+0.05y2 in terms of the number
of iterations for the derivative-based
algorithm and the performance-based
algorithm
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7.2 Efficient Use of Sampled-Data Informa-

tion

In this section we are going to use the information on x̂ and v̂ to find a better
approximation of the gradient term in the heavy-ball dynamics.

Let us introduce the following a-dependent family of vector fields:

Xa
hb(x, v) =

[
v

−2
√
µv − (1 +

√
µs)∇f(x+ av)

]
, (7.5)

for a ≥ 0 where we modified the term ∇f(x) by with the term ∇f(x+ av).
The following theorem states that the continuous dynamics introduced

in 7.5 satisfy the same Lyapunov decay as 6.7 when a ≥ 0 is small enough.
This should come as no surprise, since the solution of a differential equation
is continuous with respect to parameters of the vector field. The value of
Theorem 26 is that it gives an explicit range of values of a for which this
Lyapunov decay occurs.

Theorem 26. There exists a∗ (computed explicitly along the the proof) such
that for 0 ≤ a ≤ a∗ the solutions of the dynamical system Xa

hb satisfy

V̇ + αV = 〈∇V (p), Xa
hb(p)〉+ αV (p) ≤ 0,

for α ∈ [0,
√
µ

4
].
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Proof. We have

〈∇V (p), Xa
hb(p)〉+ αV (p) = (1 +

√
µs)〈∇f(x), v〉+

√
µ ‖v‖2 − 2

√
µ ‖v‖2

− (1 +
√
µs)〈∇f(x+ av), v〉

− √µ(1 +
√
µs)〈∇f(x+ av), x− x∗〉+ αV (x, v)

= (1 +
√
µs)〈∇f(x), v〉 − √µ ‖v‖2 + αV (x, v)

− (1 +
√
µs)〈∇f(x+ av)−∇f(x) +∇f(x), v〉

− √µ(1 +
√
µs)〈∇f(x+ av)−∇f(x) +∇f(x), x− x∗〉

= −√µ ‖v‖2 −√µ(1 +
√
µs)〈∇f(x), x− x∗〉+ αV (p)︸ ︷︷ ︸

Derivative-Based Term

−(1 +
√
µs)〈∇f(x+ av)−∇f(x), v〉︸ ︷︷ ︸

Term I

−√µ(1 +
√
µs)〈∇f(x+ av)−∇f(x), x− x∗〉︸ ︷︷ ︸

Term II

We observe that “Derivative-Based Term” is the term 〈∇V (p), Xhb〉 +
αV (p). Therefore, “Term I” and “Term II” can be seen as perturbations of
the original bounds (they vanish for a = 0). By strong-convexity of f

−〈∇f(x+ av)−∇f(x), v〉 ≤ −aµ ‖v‖2

“ Term I” is always helping to maintain V̇ + αV ≤ 0. The interpretation
of “Term II” is harder. Intuitively, this term would become negative when
moving towards the minimizer under reasonable assumptions.
It is easy to see that

Derivative-Based Term ≤ (α
3

4
−√µ) ‖v‖2

+
(
(1 +

√
µs)

α−√µ
2L

+ (α2µ−
√
µ(1 +

√
µs)µ)

2
)

1

L2

)
‖∇f(x)‖2 ,

Term I ≤ −a(1 +
√
µs)µ ‖v‖2 ,

Term II ≤ a

µ

√
µ(1 +

√
µs)L ‖v‖ ‖∇f(x)‖ .
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Therefore,

V̇ + αV ≤ (α2µ−
√
µ(1 +

√
µs)µ)

2
)

1

L2

)
‖∇f(x)‖2

+ (α
3

4
−√µ) ‖v‖2 +

(
(1 +

√
µs)

α−√µ
2L

+ a
(
− (1 +

√
µs)µ ‖v‖2

+
1

µ

√
µ(1 +

√
µs)L ‖v‖ ‖∇f(x)‖)

)
.

Define

β1 = (1 +
√
µs)µ,

β2 =
1

µ

√
µ(1 +

√
µs)L,

β3 = −(α
3

4
−√µ),

β4 = −
(
(1 +

√
µs)

α−√µ
2L

+ (α2µ−
√
µ(1 +

√
µs)µ)

2
)

1

L2

)
,

and thus

V̇ + αV ≤ a
(
− β ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖

)
− β3 ‖v‖2 − β4 ‖∇f(x)‖2 ,

where the βi’s are all positive. So, if we guarantee that

a
(
− β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖

)
− β3 ‖v‖2 − β4 ‖∇f(x)‖2 ≤ 0

then we can ensure the desired Lypaunov decay. Since a ≥ 0 expression 7.6
is satisfied if −β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖ ≤ 0. Thus, we only need to study
the complementary case, −β ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖ > 0, in which 7.6 can be
rewritten as

a ≤ β3 ‖v‖2 + β4 ‖∇f(x)‖2

−β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖
.

Finally, we show that
β3 ‖v‖2 + β4 ‖∇f(x)‖2

−β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖
is positively lower bounded.

We introduce the following auxiliary expression (where we substituted ‖v‖ =
z1 and ‖∇f(x)‖ = z2)

β3z
2
1 + β4z

2
2

−β1z21 + β2z1z2
.
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Dividing by z21 in the numerator and denominator results in

β3 + β4(
z2
z1

)2

−β1 + β2
z2
z1

,

and renaming
z2
z1

= z leads us to the function

g(z) =
β3 + β4z

2

−β1 + β2z
.

It’s easy to see by elementary calculus that this one-variable function is lower
bounded.

Thus, we have proved that the new dynamics 7.5 converges at least at
the same rate as the standard high-resolution heavy-ball dynamics. It seems
convenient therefore to develop triggering algorithms like 3. In order to
proceed in that direction we need to upper bound the Lyapunov decay:

Proposition 27 (Triggered-Sampled discretization of 7.5). For the dynamics
7.5, let ṗ(t) = Xa

hb(p̂), p(0) = p̂ = [x̂, v̂], then

d
dt
V (p(t)) + αV (p(t))

= 〈∇V (p̂+ tXa
hb(p̂)), Xa

hb(p̂)〉+ αV (p̂+ tXhb(p̂))

= 〈∇V (p̂+ tXa
hb(p̂))−∇V (p̂), Xa

hb(p̄)〉︸ ︷︷ ︸
TermS I

+α(V (p̂+ tXa
hb(p̂))− V (p̂))︸ ︷︷ ︸

TermS II

+ 〈∇V (p̂), Xa
hb(p̄)〉+ αV (p̂)︸ ︷︷ ︸

TermS III

.

Then, the following bounds hold:

1. TermS I ≤ ASET(p̂, a, t) ≤ ASST(p̂, a)t;

2. TermS II ≤ BCS
ET(p̂, a, t) ≤ BS

ST(p̂, a)t+ CS
ST(p̂, a)t2;

3. TermS III ≤ DS
ET(p̂, a, t) = DS

ST(p̂, a),

and

ASET(p̂, a, t) = (1 +
√
µs)〈∇f(x̂+ tv̂)−∇f(x̂), v̂〉

+ 2µt ‖v̂‖2 + t2
√
µ(1 +

√
µs)〈∇f(x̂+ av̂), v̂〉

+ t(1 +
√
µs)2 ‖∇f(x̂+ av̂)‖2

61



BCS
ET(p̂, a, t) = (1 +

√
µs)(f(x̂+ tv̂)− f(x̂))+

+ t2
1

4
‖−2
√
µv̂ − (1 +

√
µs)∇f(x̂+ av̂)‖2

+−t(1 +
√
µs)〈v̂,∇f(x̂+ av̂)〉 − t√µ ‖v̂‖2

+ t2
1

4
‖(1 +

√
µs)∇f(x̂+ av̂)‖2

− t√µ(1 +
√
µs) ‖∇f(x̂+ av̂)‖2 /L

DS
ET(p̂, a) = DS

ST = (α2µ−
√
µ(1 +

√
µs)µ)

2
)

1

L2

)
‖∇f(x)‖2

+ (α
3

4
−√µ) ‖v‖2 +

(
(1 +

√
µs)

α−√µ
2L

+ a
(
− (1 +

√
µs)µ ‖v‖2

+
1

µ

√
µ(1 +

√
µs)L ‖v‖ ‖∇f(x)‖)

)
.

ASST(p̂, a) = (1 +
√
µs)L ‖v‖2 + 2µ ‖v̂‖2

+ 2
√
µ(1 +

√
µs)〈∇f(x̂+ av̂), v̂〉

+ (1 +
√
µs)2 ‖∇f(x̂+ av̂)‖2

BS
ST(p̂, a) = −√µ ‖v̂‖2

−√µ(1 +
√
µs)

1

L
‖∇f(x̂+ av̂)‖2 ,

CS
ST(p̂, a) = (1 +

√
µs)

L

2
‖v̂‖2

+
1

4
‖−2
√
µv̂ − (1 +

√
µs)∇f(x̂+ av̂)‖2

+
1

4
‖−(1 +

√
µs)∇f(x̂+ av̂)‖2 ,

Proof. The computations are included in Appendix B.
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Next, we can define:

gSET(p̂, a, t) = ASET(p̂, a, t) +BCS
ET(p̂, a, t) +DS

ET(p̂, a, t),

gSST(p̂, a, t) = CS
ST(p̂, a)t2 + (ASST(p̂, a) +BS

ST(p̂, a))t+DS
ST(p̂, a),

and we have the bounds

d

dt
V (p(t)) + αV (p(t)) ≤ gSET(p̂, t) ≤ gSST(p̂, a, t).

Using the bounds computed in Proposition 27 we can determine the stepsize
starting from p̂. We set:

stepS#(p̂, a) = min{t | t > 0 such that gS#(p̂, a, t) = 0} (7.6)

and implement Algorithm 5, whose properties are gathered in proposition
28.

Algorithm 5: Predictive, Forward-Euler

Initialization: Initial point (p0), convergence rate (α), objective
function (f), tolerance (ε), a ≤ a∗;
Set: k = 0;
while ‖∇f(xk)‖ ≥ ε do

Compute stepsize tk according to (7.6);
Compute next iterate pk+1 = pk + tkX

a
hb(pk);

Set k = k + 1
end

Proposition 28 (Non-Zeno and Convergence-Rate for algorithm 5). Algo-
rithm 5 satisfies

1. The stepsize is uniformly lower bounded

2. The algorithm satisfies the convergence rate

f(xk+1)− f(x∗) = O(e−α
∑k
i=0)

Proof. The proof follows follows a pattern similar to the one done in chapter
6 for the a = 0 case. The key point is showing that DS

ET ≤ 0, which follows
from Theorem 26.
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7.2.1 Simulations

Even though we haven’t theoretically proved that Algorithm 5 with a > 0
has better convergence properties than the same algorithm with a = 0 (i,e,
Algorithm 3), here we present some simulations that suggest that this is the
case. Once again we consider only quadratic objectives so that we are able
to compute L and µ easily. The MATLAB code used for these simulations
is included in Appendix C.
The first one is for the well conditioned f(x, y) = 5x2 + y2. The second
simulation is for the ill-conditioned f(x, y) = 134x2 + 0.05y2. In this case,
the improvement seems to be even bigger than the improvement we got from
using Algorithm 4.

Figure 7.5: Value of f(x, y) = 5x2 +
y2 in terms of the number of itera-
tions for algorithm 5 with a = a∗

Figure 7.6: Value of f(x, y) =
134x2 + 0.05y2 in terms of the num-
ber of iterations for Algorithm 5 with
a = a∗ and Algorithm 3

Even though most of the simulations we have tried show that algorithm
5 doesn’t exhibit acceleration, an interesting phenomenon occurs when we
consider values of a outside the range where we have proved convergence.
Figure 7.7 shows a simple example where considering a = 5a∗, algorithm 5
performs significantly better than with a = a∗.
Note also another interesting phenomenon from Figure 7.7: the overshoot of
Polyak’s Heavy-Ball is significantly bigger than that of Algorithm 5.
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Figure 7.7: Value of f(x, y) = 100x2 +y2 in terms of the number of iterations
for algorithm 5 and Polyak’s Heavy Ball

7.3 Adaptive Sampling

In the previous section we designed new dynamics that use a uniform value
of a. Here we introduce an adaptive version where a adjusts to the current
state of the algorithm. The motivation behind using an adaptive a comes
from the fact that the value of a∗ from 26 has been calculated by finding the
global minimum of the function

β3 ‖v‖2 + β4 ‖∇f(x)‖2

−β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖

However, if we restrict this function on a specific subregion of the state space,
this minimal value can be improved. This is generally a good thing, since
many simulations, like 7.7 suggest that running algorithm 4 with values of
a greater than a∗ leads to improved convergence rate. This should come
as no surprise, since 28 only specifies a range for the values of a for which
the algorithm is convergent, but this range might not be tight. It would be
interesting to try to find better theoretical upper bounds but to the best of
our knowledge the bound provided in B (which is an improved version on the
one from 26) is the best one available.
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Therefore, we will establish a way to use an adaptive value of a that
depends on the region of the state space of the current iterate. We motivate
this from the continuous framework, computing conditions on (x, v) such that
〈∇V (p(t)), Xa

hb(p(t)〉+ αV (p(t)) ≤ 0 is satisfied in those regions. We choose
two sequences {nk} and {mk} which are positive, monotonically increasing
and satisfy

lim
k→∞

nk = lim
k→∞

mk =∞.

Then we split the state space into regions Rij defined by

Rij = {(x, v) such that ni ≤ ‖∇f(x)‖2 < ni+1,

mj ≤ ‖v‖2 < mj+1}.

Observe that Rij ∩ Rkl = ∅ and ∪ijRij = R2n. Next, we show how to
compute a value of a for any of these regions satisfying the Lyapunov decay
V̇ + αV ≤ 0. For the sake of simplicity fix i and j, and let us denote

∇fmin =ni,

∇fmax =ni+1,

vmin =mi,

vmax =mi+1

and so we focus on the set of points (x, v) satisfying

vmin ≤ ‖v‖ < vmax, ∇fmin ≤ ‖∇f(x)‖ < ∇fmax. (7.7)

Following bounds similar to the previous ones, we can upper bound 7.6
by

a(−β1v2min + β2vmax∇fmax)− β3v2min − β4∇f 2
min.

If a(−β1v2min+β2vmax∇fmax) ≤ 0 then any value of a satisfies the decay condi-
tion V̇ +αV on the region specified by 7.7. If a(−β1v2min +β2vmax∇fmax) ≥ 0
then any value of a satisfying

a ≤ β3v
2
min + β4∇f 2

min

−β1vmin + β2vmax∇fmax

implies the decay condition V̇ +αV on the region specified by 7.7. Therefore,
we can define the switched or hybrid system given by[

ẋ
v̇

]
= Xa

hb(x, v) where a =
β3v

2
min + β4∇f 2

min

−β1vmin + β2vmax∇fmax

(7.8)
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and

∇fmin = ni i = arg max
i

ni such that ni ≤ ‖∇f(x)‖2 , (7.9)

∇fmax = ni+1, (7.10)

vmin = nj j = arg max
j

ni such that mi ≤ ‖v‖ , (7.11)

vmax = nj+1. (7.12)

By design the proposed dynamics satisfy the following proposition.

Proposition 29 (Convergence of Triggered-Sampled Dynamics 7.8-7.12).
The dynamical system described in 7.8-7.12 converges to the minimizer, x∗,
satisfying the Lyapunov decay condition

V̇ + αV ≤ 0

Proof. By design the dynamics 7.8-7.12 satisfy the Lyapunov decay condition
in any regions, so the result follows.

This proposition suggests that we can design an algorithm that uses an
adaptive a by taking into account the current state and still guarantee Zeno
behavior.

Informal Description

At each iterate, Algorithm 6 checks whether DET (p̂, a) < 0 and
the stepsize is greater than a pre-specified lower bound. If this
is the case, the value of a is augmented by a certain factor η1
(inspired by the heuristic outlined above that a bigger value of a
might lead to an improved convergence rate). If one of the two
conditions is not fulfilled, the value of a is decreased by a certain
factor η2, arguing that eventually, if a gets close enough to zero,
the two conditions will be satisfied. The value of a is reused
throughout the iterations so that the algorithm has memory of
the values of a used in previous iterations.
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Algorithm 6: Adaptive Sampling Algorithm

Initialization: Initial point (p0), convergence rate (α), objective
function (f), tolerance (ε), increase rate (η1 > 1), decrease rate
(η2 < 1), lower bound of the stepsize (t̂), initial a (a0);
Set: k = 0;
while ‖∇f(xk)‖ ≥ ε do

Compute stepsize tk according to 7.4;

if Da
ET(p̂, a, t) < 0 and t̂ ≤ tk then

Compute next iterate pk+1 = pk + tkXhb(pk);
a = aβ1;

else
while Da

ET(p̂, a, t) ≥ 0 or t̂ ≥ tk do
a = aβ2 ;

end
Compute stepsize tk according to (7.4);
Compute next iterate pk+1 = pk + tkXhb(pk);

Set k = k + 1
end

The properties of Algorithm 6 are gathered in the following proposition:

Proposition 30 (Non-Zeno and Convergence-Rate for Algorithm 6). Algo-
rithm 6 satisfies

1. It is executable

2. The stepsize is uniformly lower bounded

3. The algorithm satisfies the convergence rate

f(xk+1)− f(x∗) = O(e−α
∑k
i=0)

Proof. Observe that Algorithm 6 has the following properties:

• At any step, as long as DET < 0 a new stepsize tk can be computed,
although we don’t know if this step is lower-bounded for a > a∗.

• If the lower bound of the stepsize t̂ is less than the bound provided
in Proposition 28, then the algorithm will satisfy the condition tk > t̂
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if a is decreased enough (by continuity). This rules out Zeno behaviour.

• For a sufficiently small we are in the conditions of Proposition 28, which
guarantee that the algorithm always terminates, i.e, for small enough
a, DET < 0 and tk > t̂ will be satisfied.
The proof follows from these observations.

7.3.1 Simulations

Here we present two simulations that show that an algorithm with adaptive
a has better convergence properties than an algorithm with constant a > 0.
The MATLAB code used for these simulations is included in appendix C.

Figure 7.8: Value of f(x, y) =
100x2 + y2 in terms of the number of
iterations for algorithm 6 (adaptive
a) and algorithm 5(constant a > 0),
η1 = 5, η2 = 0.5, x0 = [201, 304],

v0 = −2
√
s∇f(x0)
1+
√
µs

Figure 7.9: Value of f(x, y) =
134x2+0.05y2 in terms of the number
of iterations for algorithm 6(adap-
tive a) and algorithm 5 (constant
a = a∗ > 0, η1 = 5, η2 = 0.5),

x0 = [201, 304], v0 = −2
√
s∇f(x0)
1+
√
µs

The improvement in both cases is huge. Note that the characteristic os-
cillations of the heavy-ball dynamics are avoided.
It should be noted though that we lack a principled way to select the hyper-
parameters η1 and η2 in order to ensure the maximal improvement on the
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constant a case. For the simulations above, they have been selected by trial
and error.

7.4 High-Order Integrators

In this section we will derive a triggered implemetation for a more accurate
integrator than the sample-and-hold (or zero-order-hold) one we have been
using up to this point.

Xhb(x, v) =

[
v

−2
√
µv − (1 +

√
µs)∇f(x))

]
=

[
v

−2
√
µv

]
︸ ︷︷ ︸
Linear Term

+

[
0

−(1 +
√
µs)∇f(x))

]
︸ ︷︷ ︸

Non-linear Term

.
(7.13)

Since the non-linear part is the one complicating the dynamics, i.e. hinder-
ing the closed-form solution of the dynamics, it is appealing to design an
integrator which takes this part as a constant. That is, given x̂ we introduce
the family of dynamical systems

XH,x̂
hb (x, v) =

[
v

−2
√
µv − (1 +

√
µs)∇f(x̂)

]
(7.14)

denoted by first-order-hold dynamics. These dynamical systems are in-homogeneous
linear dynamical systems and therefore integrable by the method of variation
of constants. More precisely, the flow with initial condition p̂ = [x̂, v̂] is given
by

x(t, x̂, v̂) = K1(x̂, v̂)e−2
√
µt −

(1 +
√
µs)∇f(x̂)

2
√
µ

t+K2(x̂, v̂) (7.15)

v(t, x̂, v̂) = −2
√
µK1(x̂, v̂)e−2

√
µt −

1 +
√
µs

2
√
µ
∇f(x̂) (7.16)

where

K1(x̂, v̂) = − v̂

2
√
µ
−

1 +
√
µs

4µ
∇f(x̂)

K2(x̂, v̂) = x̂+
v̂

2
√
µ

+
1 +
√
µs

4µ
∇f(x̂)
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This is what we will call the first-order-hold integrator, or high-order-hold
integrator. In order to develop a discretization of the continuous heavy-ball
dynamics where we use the dynamics 7.15-7.16 as an integrator, we need to
compute the evolution of V̇ +αV along the proposed dynamics. We proceed
only in the ET-case for the sake of simplicity, but analogous results can be
computed for the ST-case.

Proposition 31 (Event/Self-triggered-HOH discretization of heavy-ball dy-
namics). For the predicted high-order-hold dynamics ṗ = XH,x̂

hb (p(t)), p(0) =
p̂ = [x̂, v̂] and 0 ≤ α ≤ √µ/4, let

d
dt
V (p(t)) + αV (p(t))

= 〈∇V (p(t)), XH,x̂
hb (p(t))〉+ αV (p(t))

= 〈∇V (p(t))−∇V (p̂), XH,x̂
hb (p(t))〉︸ ︷︷ ︸

TermH I

+ 〈∇V (p(0)), XH,x̂
hb (p(t))−XHOH,x̂

hb (p̂)〉︸ ︷︷ ︸
TermH II

+α(V (p(t))− V (p(0))︸ ︷︷ ︸
TermH III

+ 〈∇V (p̂), XH,x̂
hb (p̂)〉+ αV (p̂)︸ ︷︷ ︸

TermH IV

(7.17)

Then, the following bounds hold:

TermH I = AHET ≤ (1 +
√
µs)〈∇f(x(t))−∇f(x(0)), v(t)〉

− √µ〈v(t)− v(0), v(t)〉

− (1 +
√
µs〈v(t)− v(0),∇f(x̂)〉

− √µ(1 +
√
µs)〈x(t)− x(0),∇f(x̂)〉

TermH II = BET ≤ (1 +
√
µs)〈∇f(x), v(t)− v(0)〉

− √µ〈v(0), v(t)− v(0)〉
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TermH III = CH
ET ≤ α(1 +

√
µs)(f(x(t))− f(x̂))

+
α

4
(‖v(t)‖2 − ‖v̂‖2)

α

4
‖v(t)− v̂ + 2

√
µ(x(t)− x̂)‖2

+
α

2
〈v(t)− v̂ + 2

√
µ(x(t)− x̂), v̂〉+

t(1 +
√
µs)
‖∇f(x̂)‖2

2µ

TermH IV = DH
ET ≤ (α

3

4
−√µ) ‖v̂‖2

(
(1 +

√
µs)

α−√µ
2L

+ (α2µ−
√
µ(1 +

√
µs)µ)

2
)

1

L2

)
‖∇f(x̂)‖2 ,

Proof. The proof is presented in Appendix B.

Using these computations, we define the upper bound, gET(p̂, t) in the
obvious way:

gHET(p̂, t) = AHET(p̂, t) +BH
ET(p̂, t) + CH

ET(p̂, t) +DH
ET(p̂, t) (7.18)

d

dt
V (p(t)) + αV (p(t)) ≤ gET(p̂, t). (7.19)

This is all we need to determine the stepsize starting from p̂. We set:

stepHET (p̂) = min{t | t > 0 such that gHET (p̂, t) = 0}

and propose the following algorithm:

Theorem 32. For 0 ≤ α ≤ √µ/4, Algorithm 7 is a variable stepsize inte-
grator with the following properties

1. The stepsize is uniformly lower bounded by a positive constant;

2. The algorithm satisfies the convergence rate

f(xk+1)− f(x∗) = O(e−α
∑k
i=0)
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Algorithm 7: High-Order-Hold Algorithm

Initialization: Initial point (p0), convergence rate (α), objective
function (f), tolerance (ε) ;
Set: k = 0;
while ‖∇f(x)‖ ≥ ε do

Compute stepsize tk as gHET (p̂, t) = 0 ;
Compute next iterate according to 7.15 and 7.16 ;
Set k = k + 1

end

Proof. We just sketch the proof. Using

x(t)− x(0) =
(1 +

√
µs)∇f(x̂)(1− e−2t

√
µ)

4µ

+
2v̂
√
µ(1− e−2t

√
µ)− 2(1 +

√
µs)∇f(x̂)t

√
µ

4µ

v(t)− v(0) = 1/2(e−2t
√
µ − 1)(2v(0) +

1 +
√
µs

√
µ
∇f(x))

we may bound stepHET by an expression of the form

stepHET ≤ (β1 ‖v̂‖2 + β2 ‖∇f(x̂)‖2)t+DST (p̂)

where βi are strictly positive. To ensure

stepsHET ≤ 0

we just need

(β1 ‖v̂‖2 + β2 ‖∇f(x̂)‖2)t+DST (p̂) ≤ 0

⇔ t ≤ −DST

(β1 ‖v̂‖2 + β2 ‖∇f(x̂)‖2
.

Finally, using Lemma 1 in the supplementary material of [16] we can proof
the result.
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7.4.1 Simulations

First we show how the trajectory followed by the first order hold 7.13 differs
from that followed by the zero-order-hold (which is obviously a straight line)
and the exact dynamics 6.7:

Figure 7.10: Trajectories of Zero-Order-Hold, First-Order-Hold 7.13 and Ex-
act Dynamics for f(x, y) = 5x2 + y2 for a single iteration with initial condi-
tions x0 = [1; 1] v0 = −0.43[1; 5]

Even though the trajectory followed by 7.13 is still far from the actual
dynamics, it appears to be better than a mere straight line approximation.
It should also be noted that as we get closer to the optimum, ∇f(x(t)) gets
closer to ∇f(x̂) and 7.13 becomes an increasingly more accurate surrogate
for 6.7.
Once again, even though we haven’t provided any theoretical results estab-
lishing the superiority of Algorithm 7 (first-order-hold, or FOH for short) to
algorithm 3 (zero-order-hold, or ZOH for short), we will present some simu-
lations that suggest that this is the case. The MATLAB code used for these
simulations is included in appendix C.
The next figure shows the comparison between the zero-order-hold -based al-
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gorithm and the first-order-hold -based one, both for a fairly well conditioned
function and an ill-conditioned one.

Figure 7.11: Value of f(x, y) = 5x2+
y2 in terms of the number of itera-
tions for Algorithm 7 (FOH) and al-
gorithm 3(ZOH)

Figure 7.12: Value of f(x, y) =
134x2+0.05y2 in terms of the number
of iterations for Algorithm 7(FOH)
and Algorithm 3(ZOH)

7.5 Performance-Based Sampled Integrator

Here we will show how to combine approaches 7.1 and 7.2 to obtain a more
powerful integrator. It should be noted that the High-Order-Hold could also
be coupled to it, but we decide not to include it to simplify the computations.
The critical point is showing that we can also find an explicit range of values
of a for which we can guarantee the desired convergence rate. We will prove
that the same range [0, a∗] can be used in the performance-based case.
By an analogous argument to the one done in 7.1, the next stepsize can be
found by solving the equation:

ti+1 = min{t | t > ti such that

∫ t

0

eαtg#(pi, a, t) = 0}. (7.20)

where gET(p, a, t) and gST(p, a, t) are the ones defined in 7.2. The only con-
dition we need for ti+1 to be well defined is gST(pi, a, 0) = DST(pi, a) < 0.
We can guarantee that by taking a < a∗ as we know from 26. We can then
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implement the following algorithm:

Algorithm 8: Predictive, Forward-Euler

Initialization: Initial point (p0), convergence rate (α), objective
function (f), tolerance (ε), a ≤ a∗;
Set: k = 0;
while ‖∇f(xk)‖ ≥ ε do

Compute stepsize tk according to (7.20);
Compute next iterate pk+1 = pk + tkX

a
hb(pk);

Set k = k + 1
end

Proposition 33. (Non-Zeno and Convergence-Rate for 8) Algorithm 8 sat-
isfies:

1. The stepsize is uniformly lower bounded

2. The algorithm satisfies the convergence rate

f(xk+1)− f(x∗) = O(e−α
∑k
i=0)

Proof. Define F (t) =
∫ t
0
eατgST(p, a, τ)dτ .

The first part follows from observing that

d

dt
F (t) = eαtgST(p, a, t)

so the critical points of F (t) are the zeros of gST(p, a, t) and since F (t) is
negative in a neighbourhood of the origin, the first zero of F (t) is greater
than its first critical point. Now since we know that the zeros of gST(p, a, t)
(which are of course stepSST(p, a)) are lower bounded, we are done. The second
point follows by construction.

7.5.1 Simulations

Here we show how Algorithm 8 performs better than Algorithm 4 and Algo-
rithm 5 separately in a simple simulation.
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Figure 7.13: Value of f(x, y) =
100x2 + y2 in terms of the number
of iterations for Algorithm 8 and al-
gorithm 5

Figure 7.14: Value of f(x, y) =
100x2 + y2 in terms of the number
of iterations for Algorithm 8 and Al-
gorithm 5
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Chapter 8

Estimating Sequences from a
Continuous-time perspective

This chapter will review the estimating sequences technique introduced in
chapter 2, but this time we will do so from a continuous setting. Once again,
as a recurring theme in this dissertation, we hope that the continuous-time
perspective will help us in the analysis.
Most of the ideas covered in this chapter are based on some notes Miguel
Vaquero gave me during our discussions at UCSD. I have completed some of
the proofs and given coherence to the notes with respect to the rest of the
thesis, but the fundamental ideas are his. A similar analysis can be found at
[2].
We will start by requiring a certain rate of convergence of the objective
function to its optimal value, and we will end up deriving dynamics that
ensure such a convergence rate.
Let f ∈ S 2

µ,L and as usual we want to solve the unconstrained minimization
problem:

min
x∈Rn

f(x)

We want to construct continuous and discrete dynamics to solve this
problem with convergence rate O(λ(t)). For convenience, define α(t) such
that α(t) = 1

λ(t)
and satisfying α(0) = 1, α̇(t) > 0 and limt→∞ α(t) =∞.

Let’s define the continuous-time equivalent of an estimating sequence:

Definition 34. A sequence of functions {φt(x)} is an estimating sequence if
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φt(x) ≤ (1− 1

α(t)
)f(x) +

1

α(t)
φ0(x) (8.1)

Remark 8. φt(x) is an homotopy between f(x) and φ0(x)

Proposition 35. If x(t) is such that

f(x(t)) ≤ min
x
φt(x)

then

f(x(t))− f(x∗) = O(
1

α(t)
)

Proof.

f(x(t)) ≤ min
x
φt(x) ≤ (1− λ(t))f(x∗) + λ(t)φ0(x∗)

⇒ f(x(t))− f(x∗) ≤
φ0(x∗)− f(x∗)

α(t)
= O(

1

α(t)
)

Just like in the discrete case, the obvious question at this point is how
to construct these estimating sequences. Drawing inspiration from discrete-
time formulas for constructing estimating sequences, the following proposi-
tion gives a way to construct them:

Proposition 36. Let y(t) be an arbitrary curve on Rn. Define:

φt(x) =

∫ t
0
f(y(τ))α̇(τ)dτ +

∫ t
0
〈∇f(y(τ)), x− y(τ)〉α̇(τ)dτ + φ0(x)

α(t)
(8.2)

Then, φt(x) is an estimate sequence.

Proof. Recall that if f is convex, then f(x) ≥ f(y) +∇f(y)T (x − y). Now
since α̇(t) > 0 and by monotonicity of the integral:∫ t

0

f(y(τ))α̇(τ)dτ +

∫ t

0

〈∇f(y(τ)), x− y(τ)〉α̇(τ)dτ ≤
∫ t

0

f(x)α̇(t)dτ

= f(x)
(
α(t)− 1

)
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where in the evaluation of the integral we have used the fact that α(0) = 1.
Now, substituting in 8.2, we get:

φt(x) ≤ f(x)(1− 1

α(t)
) + φ0(x)

1

α(t)

And therefore φt(x) is an estimating sequence.

Now we want to construct a curve x(t) such that f(x(t)) ≤ minx φt(x) is
satisfied. Start by defining:

z(t) = arg min
x

φt(x)

Equivalently:

z(t) = arg min
x

∫ t

0

〈∇f(y(τ)), x− y(τ)〉α̇(τ)dτ + φ0(x)

Let’s find out the dynamics of z(t):

d

dx

(∫ t

0

〈∇f(y(τ)), x− y(τ)〉α̇(τ)dτ + φ0(x)
)∣∣∣∣

z(t)

= 0

⇒
∫ t

0

∇f(y(τ))α̇(τ) + φ′0(z(t)) = 0

⇒ ∇f(y(t))α̇(t) + φ′′0(z(t))ż(t) = 0

By assuming φ0(x) to be quadratic of the form φ0(x) = 1
2
(x− z(0))2 + c,

where c is a constant:

ż(t) = −α̇(t)∇f(y(t)) (8.3)

Let’s return to the original condition:

f(x(t))− φt(z(t)) ≤ 0

⇔ α(t)f(x(t))−
∫ t

0
f(y(τ))α(τ))dτ −

∫ t

0
∇f(y(τ)), z(t)− y(τ)〉α̇(τ)dτ − φ0(z(t)) ≤ 0
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Since this inequality is trivially true for t = 0, we will use our freedom to
choose y(t) to force the derivative of the left hand side to be negative for all t.

Taking the derivative of the left hand side and taking y(t) = x(t) we find
the following condition.

〈αẋ− (z − x)α̇,∇f(x)〉 ≤ 0

The equality case can be enforced by following the dynamics:

ẋ(t) = (z(t)− x(t))
α̇(t)

α(t)

Altogether, we have found a system of differential equations whose solu-
tion satisfies f(x(t))− f(x∗) = O( 1

α(t)
):[

ż
ẋ

]
=

[
−∇f(x)α̇
(z − x) α̇

α

]
, (8.4)

At this point we will make a couple of remarks:

Remark 9. We believe it is possible to relate the accelerated universal meth-
ods, presented in [2], of which Nesterov’s Accelerated Gradient is a particular
case, to discretizations of 8.4.

Remark 10. We can derive a Lyapunov function for the system 8.4:

d

dt
(α(t)(f(x(t))− f(x∗)) = α̇f(x(t)) + α〈∇f(x), ẋ〉 − α̇f(x∗)

= α̇
(
f(x(t))− f(x∗) + 〈∇f(x), z − x∗〉+ 〈∇f(x), x∗ − x〉

)
≤ α̇〈∇f(x), z − x∗〉

where in the last inequality we used the convexity of f .
Now note that the right hand side of the inequality is − d

dt
1
2
(z − x∗)2, so:

d

dt

(
α(t)(f(x(t))− f(x∗)) +

1

2
(z − x∗)2

)
≤ 0

And so α(t)(f(x(t))− f(x∗)) + 1
2
(z−x∗)2 is a Lyapunov function for 8.4.

This Lyapunov function is suspiciously similar to the one we have used for
the high-resolution heavy-ball dynamics, so with an appropiate change of vari-
ables in z the two can probably be related.
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Chapter 9

Conclusions and Future Work

The main purpose of this thesis has been to introduce a new technique to
discretize dynamical systems that arise as continuous-time limits of discrete-
time optimization algorithms. This technique is based on ideas borrowed
from event-triggered control. We have suggested some improvements on this
technique that can yield an improved convergence rate.
Even though all the algorithms we have introduced have been shown to decay
the Lyapunov function at the desired rate at each iteration and don’t exhibit
Zeno behavior, we haven’t been able to give any tight theoretical guarantees
on their convergence rate, so the question of whether they achieve accelera-
tion still remains a challenge.
Most of the simulations we have run show that some of the most sophisti-
cated algorithms we have introduced, like the Adaptive-a Algorithm or the
Performance-Based Sampled Integrator are very close to the performance of
the standard Polyak’s heavy-ball for quadratic objectives.
An interesting line of research in that sense is that of combining the algo-
rithms introduced in chapter 7. Hypothetically, the combination of all the
improvement directions in a single algorithm might lead to an optimal con-
vergence rate. Once again, proving this is might be hard and further research
should be conducted.
As has been noted elsewhere, all the event-triggered algorithms implemented
throughout the thesis are greedy, in the sense that at each iteration they try
to find the maximal stepsize for which the triggering condition remains true.
This is not necessarily an optimal heuristic, since a more cautious stepsize
might lead to improved performance later on. Developing a framework to
decide when a certain algorithm should be greedy can probably lead to much
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better convergence rates.
On the other hand, by reviewing the literature on high-resolution differential
equations we have seen how the continuous-time perspective can shed some
light into the phenomenon of acceleration, and why Nesterov’s Accelerated
Gradient is superior to Polyak’s Heavy Ball for generic convex functions.
The success of this approach suggests that the ideas introduced in chap-
ter 8, by considering the continuous-time analogue of Nesterov’s estimating
sequences, might also be a promising line of research to understand the fun-
damental properties of acceleration and the difference between optimization
algorithms.
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Appendix A

Smooth and Strongly Convex
Functions

In this appendix we present some properties of smooth and strongly-convex
functions, which are the type of functions we use in most of the thesis. This
properties are used in some of the proofs throughout the thesis.

Definition 37. A differentiable function f is µ-strongly-convex if:

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
‖y − x‖2 (A.1)

for some µ > 0 and all x, y

Proposition 38 ([18]). The following conditions are all equivalent to a dif-
ferentiable function f being µ-strongly-convex:

1. f(y) ≥ f(x) +∇f(x)T (y − x) + µ
2
‖y − x‖2;

2. g(x) = f(x)− µ
2
‖x‖2 is convex;

3. (∇f(x)−∇f(y))T (x− y) ≥ µ ‖x− y‖2;

4. f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)− α(1−α)µ
2
‖x− y‖2 α ∈ [0, 1];

∀ x, y

Proof. 1 ≡ 2: It follows from the first-order condition for convexity of g(x),
i.e, g(x) is convex if and only if g(y) ≥ g(x) +∇g(x)T (y − x) ∀x, y
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2 ≡ 3: It follows from the monotone gradient condition for convexity of
g(x), i.e., g(x) is convex if and only if (∇g(x)−∇g(y))T (x− y) ≥ 0 ∀x, y

2 ≡ 4: It follows from the definition of convexity: g(x) is convex if g(αx+
(1− α)y) ≤ αg(x) + (1− α)g(y) ∀x, y, α ∈ [0, 1]

Now we will list some conditions that are implied by strong convexity but
which are not equivalent to it:

Proposition 39 ([18]). Let f be a continuously differentiable function. The
following conditions are all implied by strong convexity:

1. 1
2
‖∇f(x)‖2 ≥ µ(f(x)− f(x∗) ∀x

2. ‖∇f(x)−∇f(y)‖ ≥ µ ‖x− y‖ ∀x, y

3. f(y) ≤ f(x) +∇f(x)T (y − x) + 1
2µ
‖∇f(y)−∇f(x)‖2 ∀x, y

4. (∇f(x)−∇f(y))T (x− y) ≤ 1
µ
‖∇f(x)−∇f(y)‖2 ∀x, y

Proof. 1. This is often called the Polyak-Lojasiewicz (PL) inequality. Fol-
lows from minimizing with respect to y in both sides of the inequality
(A.1). The left hand side follows from the definition of minimizer. For
the right hand side, it’s easy to see that the minimum is achieved for
y = x− 1

µ
∇f(x) and then the result follows.

2. Follows from using Cauchy-Schwartz on the characterization 3 (in the
last Proposition) of strong-convexity.

3. Define the function φx(z) = f(z) − ∇f(x)T z. It is easy to see that
φx(z) is strongly-convex with the same µ since

(∇φx(z1)−∇φx(z2))T (z1 − z2) = (∇f(z1)−∇f(z2))
T (z1 − z2) ≥ µ ‖z1 − z2‖2

where we have again used the characterization 3 from the last Propo-
sition. Now the result follows from applying the Polyak-Lojasiewicz
inequality to the strongly-convex function φx(z) (taking into account
that z∗ = x)-
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4. Interchanging x and y in the previous condition:

f(x) ≤ f(y) +∇f(y)T (x− y) +
1

2µ
‖∇f(x)−∇f(y)‖2

We get the result we are looking for by adding up this inequality with
the characterization 3 of the previous Proposition.

Now let’s define L-smooth function:

Definition 40. A function f is L-smooth, or has L-Lipschitz continuous
gradient if:

‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖

Proposition 41. Let f be a convex function with L-Lipschitz continuous
gradient over Rn. Then the following conditions are equivalent:

1. ‖∇f(x)−∇f(y)‖ ≤ L ‖x− y‖ , ∀x, y;

2. g(x) = L
2
xTx− f(x) is convex

3. f(y) ≤ f(x) +∇f(x)T (y − x) + L
2
‖y − x‖2 , ∀x, y

4. (∇f(x)−∇f(y))T (x− y) ≤ L ‖x− y‖2 , ∀x, y

5. f(αx+ (1−α)y) ≥ αf(x) + (1−α)f(y)− α(1−α)L
2
‖x− y‖2 , ∀x, y, α ∈

[0, 1]

6. f(y) ≥ f(x) +∇f(x)T (y − x) + 1
2L
‖∇f(y)−∇f(x)‖2 , ∀x, y

7. (∇f(x)−∇f(y))T (x− y) ≥ 1
L
‖∇f(x)−∇f(y)‖

8. f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y)−α(1−α)
2L
‖∇f(x)−∇f(y)‖2 , ∀x, y, α ∈

[0, 1]

Proof. 2 ⇔ 3: Follows from the first order equivalence of convexity: if g(x)
is convex, then g(y) ≥ g(x) +∇g(x)T (y − x)
2⇔ 4: Follows from the fact that if g(x) is convex, then (∇g(x)−∇g(y))T (x−
y) ≥ 0
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2 ⇔ 5: Follows from the definition of convexity
6 ⇒ 8: Let xα := αx+ (1− α)y, then:

f(x) ≥ f(xα) +∇f(xα)T (x− xα) +
1

2L
‖∇f(x)−∇f(xα)‖2

f(y) ≥ f(xα) +∇f(xα)T (y − xα) +
1

2L
‖∇f(y)−∇f(xα)‖2

Multiplying the first inequality by α and the second by 1−α and adding them
together we get the result after using α ‖x‖2+(1−α) ‖y‖2 ≥ α(1−α) ‖x− y‖2
8 ⇒ 6: We can rewrite the inequality in 8 as:

f(y) ≥ f(x) +
f(x+ α(y − x))− f(x)

α
+

1− α
2L

‖∇f(x)−∇f(y)‖2

By letting α→ 0, we get the inequality in 6.
6 ⇒ 7: Interchanging x and y we get the following two inequalities:

f(y) ≥ f(x) +∇f(x)T (y − x) +
1

2L
‖∇f(y)−∇f(x)‖2

f(x) ≥ f(y) +∇f(y)T (x− y) +
1

2L
‖∇f(x)−∇f(y)‖2

Now by adding together the two inequalities we get the result.
7 ⇒ 1: Follows from the Cauchy-Schwartz inequality.
1 ⇒ 4: Also follows directly from the Cauchy-Schwartz inequality.
4⇒ 6: For this one we need f to be convex. Define φx(z) = f(z)−∇f(x)T z.
Since f is convex, φx(z) reaches its minimum at z∗ = x. 4 implies that,

(∇φx(z1)−∇φx(z2))T (z1 − z2) ≤ L ‖z1 − z2‖2

which implies that

φx(z) ≤ φx(y) +∇φx(y)T (z − y) +
L

2
‖z − x‖2

By minimizing over z, we get 6.
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Appendix B

Computations of Propositions
27 and 31

B.1 Computations for 27

• TermS I. By direct computation we have

∇V (p) =

[
(1 +

√
µs)∇f(x) +

√
µv + 2µ(x− x∗)

v +
√
µ(x− x∗)

]
,

and

∇V (p+ tXa
hb(p)) =

[
(1 +

√
µs)∇f(x+ tv) +

√
µv − t√µ(1 +

√
µs)∇f(x+ av) + 2µ(x− x∗)

v − t√µv − t(1 +
√
µs)∇f(x+ av) +

√
µ(x− x∗)

]
.

Therefore,

〈∇V (p+ tXhb(p))−∇V (p), Xa
hb(p)〉 = (1 +

√
µs)〈∇f(x+ tv)−∇f(x), v〉

+t2
√
µ(1 +

√
µs)〈∇f(x+ av), v〉+ t2µ ‖v‖2 + t(1 +

√
µs)2 ‖∇f(x+ av)‖2 .

The RHS of the last expression is precisely ASET (p, t). We can use the Lips-
chitz continuity of the gradient to get ASST (p), i.e, the property:

〈∇f(x+ tv)−∇f(x), v〉 = Lt ‖v‖2
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• TermS II We have

V (p+ tXa
hb(p))− V (p) = (1 +

√
µs)(f(x+ tv)− f(x∗))

+1
4

∥∥v − t2√µv − t(1 +
√
µs)∇f(x+ av)

∥∥2
+1

4
‖v − t2√µv − t(1 +

√
µs)∇f(x+ av) + 2

√
µ(x+ tv − x∗)

∥∥2
−(1 +

√
µs)(f(x)− f(x∗))− 1

4
‖v‖2 − 1

4

∥∥v + 2
√
µ(x− x∗)

∥∥2 .
Using ‖a+ b‖2 = ‖a‖2 + 2〈a, b〉+ ‖b‖2 on the second and third addends, the
last expression becomes

(1 +
√
µs)(f(x+ tv)− f(x)) +

1

4
‖v‖2︸ ︷︷ ︸
1

+1
4

∥∥−t2√µv − t(1 +
√
µs)∇f(x+ av)

∥∥2
+2

4
〈v,−t2√µv − t(1 +

√
µs)∇f(x+ av)〉+1

4
‖v + 2

√
µ(x− x∗)‖2︸ ︷︷ ︸
2

+1
4

∥∥−t(1 +
√
µs)∇f(x+ av)

∥∥2 + 2
4
〈v + 2

√
µ(x− x∗),−t(1 +

√
µs)∇f(x+ av)〉

−1

4
‖v‖2︸ ︷︷ ︸
1

−1

4
‖v + 2

√
µ(x− x∗)‖2︸ ︷︷ ︸
2

.

Canceling out the corresponding terms (1 and 2) we get

(1 +
√
µs)(f(x+ tv)− f(x)) + 1

4

∥∥−t2√µv − t(1 +
√
µs)∇f(x+ av)

∥∥2
+2

4
〈v,−t2√µv − t(1 +

√
µs)∇f(x+ av)〉+ 1

4

∥∥−t(1 +
√
µs)∇f(x+ av)

∥∥2
+2

4
〈v + 2

√
µ(x− x∗),−t(1 +

√
µs)∇f(x+ av)〉.

Finally, using

f(x+ tv)− f(x) ≤ 〈∇f(x), tv〉+
L

2
‖tv‖2 ,

〈x∗ − x,∇f(x+ av)〉 = 〈x∗ − x− av + av,∇f(x+ av)〉
= 〈x∗ − x− av,∇f(x+ av)〉+ 〈av,∇f(x+ av)〉

≤ −‖∇f(x+ av)‖2

L
+ 〈av,∇f(x+ av)〉,
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we can uncover the expression of BCET , BST and CST .

• TermS III. We have already computed the expression of DS
ET in The-

orem 26. We present another bound which, while more difficult to use to our
theoretical results, performs better in simulations. We have

〈∇V (p), Xa
hb(p)〉+ αV (p) = (1 +

√
µs)〈∇f(x), v〉+

√
µ ‖v‖2 − 2

√
µ ‖v‖2

−(1 +
√
µs)〈∇f(x+ av), v〉 − √µ(1 +

√
µs)〈∇f(x+ av), x− x∗〉+ αV (x, v)

and using

αV (x, v) ≤ α(1 +
√
µs)(f(x)− f(x∗)) + 3/4α ‖v‖2 + 2µα ‖x− x∗‖2

the last expression can be written as

−√µ ‖v‖2 + α(1 +
√
µs)(f(x)− f(x∗)) + 3/4α ‖v‖2 + 2µα ‖x− x∗‖2

+(1 +
√
µs)〈∇f(x)−∇f(x+ av), v〉 − √µ(1 +

√
µs)〈∇f(x+ av), x− x̂〉

(B.1)
We use,
√
µ(1 +

√
µs)〈∇f(x+ av), x∗ − x〉 =

√
µ(1 +

√
µs)〈∇f(x+ av), x∗ − x− av + av〉.

Using strong-convexity the last expression is upper bounded by
√
µ(1 +

√
µs)(f(x∗)− f(x+ av))

+
√
µ(1 +

√
µs)(−µ/2 ‖x+ av − x∗‖2)

+
√
µ(1 +

√
µs)〈∇f(x+ av), av〉.

So equation B.1 reads

−√µ ‖v‖2 + α(1 +
√
µs)(f(x)− f(x∗)) + 3/4α ‖v‖2 + 2µα ‖x− x∗‖2

+(1 +
√
µs)〈∇f(x)−∇f(x+ av), v〉+

√
µ(1 +

√
µs)(f(x∗)− f(x+ av))

+
√
µ(1 +

√
µs)(−µ/2 ‖x+ av − x∗‖2) +

√
µ(1 +

√
µs)〈∇f(x+ av), av〉,

which re-grouping terms becomes
√
µ ‖v‖2 + α(1 +

√
µs)(f(x)− f(x∗)) +

√
µ(1 +

√
µs)(f(x∗)− f(x+ av))︸ ︷︷ ︸

TermI

+3/4α ‖v‖2 + (1 +
√
µs)〈∇f(x)−∇f(x+ av), v〉

+2µα ‖x− x∗‖2 +
√
µ(1 +

√
µs)(−µ/2 ‖x+ av − x∗‖2)︸ ︷︷ ︸

Term II

+
√
µ(1 +

√
µs)〈∇f(x+ av), av〉.

(B.2)
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We observe that

Term I ≤ (1 +
√
µs)(α(f(x)− f(x∗)) +

√
µ(f(x∗)− f(x+ av) + f(x)− f(x)))

= (1 +
√
µs)
(
(α−√µ)(f(x)− f(x∗) +

√
µ(f(x)− f(x+ av)))

)
Term II ≤ 2µα ‖x− x∗‖2 −

√
µµ

2
(1 +

√
µs)(2µα−√µ(1 +

√
µs)µ

2
) ‖x− x∗‖2

+2
√
µ(1 +

√
µs)µ

2
‖x− x∗‖ ‖av‖ −

√
µ(1 +

√
µs)µ/2 ‖av‖

and finally resorting to the inequalities

f(x∗)− f(x) ≤ −‖∇f(x)‖2

2L

−‖x− x∗‖2 ≤ −
−‖∇f(x)‖

L2

‖x− x∗‖ ≤
‖∇f(x)‖

µ

equation B.2 becomes

(3/4α−√µ) ‖v‖2 + (1 +
√
µs)(α−√µ)

‖∇f(x)‖2

2L

+(1 +
√
µs)
√
µ(f(x) + f(x+ av)) + (2µα−√µµ/2(1 +

√
µs))
‖∇f(x)‖2

L2

+2
√
µµ

2
(1 +

√
µs)
‖∇f(x)‖

µ
‖av‖

−√µ(1 +
√
µs)µ/2 ‖av‖2 − (1 +

√
µs)〈∇f(x+ av)−∇f(x), v〉+

√
µ(1 +

√
µs)〈∇f(x+ av), av〉

which is the bound for TermS III given in 27

B.2 Computations of proposition 31

Equalities for Term I and II follow from direct computation. Inequality for
Term IV is derived in [16]. Here we provide a derivation of the bound for
Term III. By using Holder’s inequality appropriately we get:

V (p(t))− V (p(0)) = (1 +
√
µs)(f(x(t))− f(x̂)) +

1

2
(‖v(t)‖2 − ‖v̂‖2)+

1

2
‖a1(t) + 2

√
µa2(t)‖2 + 2〈a1(t) + 2

√
µa2(t), v + 2

√
µ(x− x∗)〉
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where a1(t) = v(t)− v̂ and a2(t) = x(t)− x̂

Let’s bound now the only term that depends on the minimizer and there-
fore we don’t know how to compute:

〈a1(t) + 2
√
µa2(t), 2

√
µ(x̂− x∗)〉

= −2
√
µ(1 +

√
µs)t〈∇f(x̂), x̂− x∗〉

≤ 2
√
µt(1 +

√
µs)‖∇f(x̂)‖

2

µ
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Appendix C

Codes

In this appendix we include some of the Matlab codes written to test some of
the algorithms presented during the thesis. The concrete bounds of the trig-
gering conditions used in the codes might differ slightly to the ones presented
throughout the thesis but in any case the algorithms are provably convergent
and don’t suffer from Zeno phenomena.

The following is an implementation of algorithm 4 in the self-triggered
case.

1 %% Performance -Based Algorithm

2 %% Self -Triggered

3
4 function [x1valuesst ,x2valuesst ,normxst ,lyapvaluesst

,fvaluesst] = performance(f,gradf ,optim ,mu,L,a,

lyapunov ,Xhba ,s,alfa ,niter ,tol ,x0,v0)

5 disp('performance ')
6 xhat = x0;

7 vhat = v0;

8 phat = [xhat ,vhat];

9 i = 1;

10 while ((norm(gradf(xhat)) > tol) && (i <= niter)

)

11 x1valuesst(i) = xhat (1);

12 x2valuesst(i) = xhat (2);

13 normxst(i) = norm(xhat (1),xhat (2));

14 lyapvaluesst(i) = lyapunov(xhat ,vhat);
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15 fvaluesst(i) = f(xhat);

16
17 t1 = (1+ sqrt(mu*s))*L*norm(vhat)^2;

18 t2 = 2*sqrt(mu)*(1+ sqrt(mu*s))*dot(gradf(

xhat+a*vhat),vhat);

19 t3 = 2*mu*norm(vhat)^2;

20 t4 = (1+ sqrt(mu*s))^2 * norm(gradf(xhat+a*

vhat))^2;

21 Ast = t1+t2+t3+t4;

22
23 u1 = -alfa*sqrt(mu)*norm(vhat)^2;

24 u2 = -alfa*sqrt(mu)*(1+ sqrt(mu*s))/L * norm(

gradf(xhat+a*vhat))^2;

25 u3 = alfa*sqrt(mu)*(1+ sqrt(mu*s))*a*dot(vhat

,gradf(xhat+a*vhat));

26 u4 = alfa *(1+ sqrt(mu*s))*dot(vhat ,gradf(xhat

)-gradf(xhat+a*vhat));

27 Bst = u1+u2+u3+u4;

28
29 v1 = alfa *(1+ sqrt(mu*s))*L/2 *norm(vhat)^2;

30 v2 = alfa/4 *norm(-2*sqrt(mu)*vhat -(1+ sqrt(

mu*s))*gradf(xhat+a*vhat))^2;

31 v3 = alfa/4 * (1+ sqrt(mu*s))^2 * norm(gradf(

xhat+a*vhat))^2;

32 Cst = v1+v2+v3;

33
34 w1 = (1+ sqrt(mu*s))*dot(gradf(xhat)-gradf(

xhat+a*vhat),vhat);

35 w2 = (3* alfa/4 - sqrt(mu)-mu*sqrt(mu)*(1+

sqrt(mu*s))*a^2 /2)*norm(vhat)^2;

36 w3 = -(mu/2 * sqrt(mu)*(1+ sqrt(mu*s)) -2*alfa

*mu)*(1/L^2)*norm(gradf(xhat))^2;

37 w4 = sqrt(mu)*(1+ sqrt(mu*s))*a*norm(gradf(

xhat))*norm(vhat);

38 w5 = a*sqrt(mu)*(1+ sqrt(mu*s))*dot(vhat ,

gradf(xhat+a*vhat));

39 w6 = -(1+sqrt(mu*s))*(sqrt(mu)-alfa)/(2*L) *

norm(gradf(xhat))^2;
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40 w7 = sqrt(mu)*(1+ sqrt(mu*s))*(f(xhat)-f(xhat

+a*vhat));

41 Dst = w1+w2+w3+w4+w5+w6+w7;

42
43 k1 = Cst;

44 k2 = Ast+Bst;

45 k3 = Dst;

46
47 %perfst = @(t)(exp(alfa*t)*(k1/alfa^2 *t^2 +

(k2/alfa - 2*k1/alfa ^2)*t + k3/alfa - k2

/alfa^2 + 2*k1/alfa ^3) -(k3/alfa - k2/alfa

^2 + 2*k1/alfa ^3));

48 perfst = @(t)integral (@(tau)(exp(alfa*tau)

.*(k1*tau.^2 + k2*tau + k3)) ,0,t);

49
50 %to find the interval where the solution is

we use the fact that

51 %stepst(p) is less than stepstp(p)

52
53 cnt = 2;

54 stepst = (-(Ast+Bst)+sqrt((Ast+Bst)^2 - 4*

Cst*Dst))/(2* Cst);

55
56 while(perfst(cnt*stepst) < 0)

57 cnt = cnt + 1;

58 end

59
60 tk = fzero(perfst ,[stepst ,cnt*stepst ]);

61
62 phat = phat + tk*Xhba(xhat ,vhat ,a);

63 xhat = [phat (1),phat (2)];

64 vhat = [phat (3),phat (4)];

65 i = i+1;

66 end

67 end

The following is an implementation of algorithm 5 in the self-triggered
case.
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1 %% Making Use of Sampling Information

2 %% Self -Triggered Algorithm

3
4 function [x1valuesst ,x2valuesst ,normxst ,lyapvaluesst

,fvaluesst] = predictedzoh(f,gradf ,optim ,mu,L,a,

lyapunov ,Xhba ,s,alfa ,niter ,tol ,x0,v0)

5 disp('predictedzoh ')
6 xhat = x0;

7 vhat = v0;

8 phat = [xhat ,vhat];

9 i = 1;

10 while ((norm(gradf(xhat)) > tol) && (i <= niter)

)

11 x1valuesst(i) = xhat (1);

12 x2valuesst(i) = xhat (2);

13 normxst(i) = norm(xhat (1),xhat (2));

14 lyapvaluesst(i) = lyapunov(xhat ,vhat);

15 fvaluesst(i) = f(xhat);

16
17 t1 = (1+ sqrt(mu*s))*L*norm(vhat)^2;

18 t2 = 2*sqrt(mu)*(1+ sqrt(mu*s))*dot(gradf(

xhat+a*vhat),vhat);

19 t3 = 2*mu*norm(vhat)^2;

20 t4 = (1+ sqrt(mu*s))^2 * norm(gradf(xhat+a*

vhat))^2;

21 Ast = t1+t2+t3+t4;

22
23 u1 = -alfa*sqrt(mu)*norm(vhat)^2;

24 u2 = -alfa*sqrt(mu)*(1+ sqrt(mu*s))/L * norm(

gradf(xhat+a*vhat))^2;

25 u3 = alfa*sqrt(mu)*(1+ sqrt(mu*s))*a*dot(vhat

,gradf(xhat+a*vhat));

26 u4 = alfa *(1+ sqrt(mu*s))*dot(vhat ,gradf(xhat

)-gradf(xhat+a*vhat));

27 Bst = u1+u2+u3+u4;

28
29 v1 = alfa *(1+ sqrt(mu*s))*L/2 *norm(vhat)^2;
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30 v2 = alfa/4 *norm(-2*sqrt(mu)*vhat -(1+ sqrt(

mu*s))*gradf(xhat+a*vhat))^2;

31 v3 = alfa/4 * (1+ sqrt(mu*s))^2 * norm(gradf(

xhat+a*vhat))^2;

32 Cst = v1+v2+v3;

33
34 w1 = (1+ sqrt(mu*s))*dot(gradf(xhat)-gradf(

xhat+a*vhat),vhat);

35 w2 = (3* alfa/4 - sqrt(mu)-mu*sqrt(mu)*(1+

sqrt(mu*s))*a^2 /2)*norm(vhat)^2;

36 w3 = -(mu/2 * sqrt(mu)*(1+ sqrt(mu*s)) -2*alfa

*mu)*(1/L^2)*norm(gradf(xhat))^2;

37 w4 = sqrt(mu)*(1+ sqrt(mu*s))*a*norm(gradf(

xhat))*norm(vhat);

38 w5 = a*sqrt(mu)*(1+ sqrt(mu*s))*dot(vhat ,

gradf(xhat+a*vhat));

39 w6 = -(1+sqrt(mu*s))*(sqrt(mu)-alfa)/(2*L) *

norm(gradf(xhat))^2;

40 w7 = sqrt(mu)*(1+ sqrt(mu*s))*(f(xhat)-f(xhat

+a*vhat));

41 Dst = w1+w2+w3+w4+w5+w6+w7;

42
43 tk = (-(Ast+Bst)+sqrt((Ast+Bst)^2 - 4*Cst*

Dst))/(2* Cst);

44
45 phat = phat + tk*Xhba(xhat ,vhat ,a);

46 xhat = [phat (1),phat (2)];

47 vhat = [phat (3),phat (4)];

48 i = i+1;

49 end

50 end

The following is an implementation of algorithm 6 where at each iteration,
we start with a∗ and then adaptively find an a suitable for that particular
iteration.

1 % Adaptive -a algorithm

2 % We start each iteration with a certain $a$
3 %Then we tune this a with an increasing rate and a
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decreasing rate

4 % Based on the heuristic "the higher the a, the

longer the stepsize"

5 function [x1values , x2values , normx , lyapvalues ,

fvalues] = adaptiveadef(f, gradf , optim , mu, L,

a0 , s, alfa , niter , tol , x0, v0 , lyapunov , Xhba ,

epsilon1 , epsilon2 , incrate , decrate)

6 disp('adaptiveadef ')
7 xhat = x0;

8 vhat = v0;

9 phat = [xhat ,vhat];

10 i = 1;

11 while((norm(gradf(xhat)) > tol) && (i <= niter))

12 i

13 x1values(i) = xhat (1);

14 x2values(i) = xhat (2);

15 normx(i) = norm(xhat (1),xhat (2));

16 lyapvalues(i) = lyapunov(xhat ,vhat);

17 fvalues(i) = f(xhat);

18
19 aa = a0;

20
21 t1 = @(a)((1+ sqrt(mu*s))*L*norm(vhat)^2);

22 t2 = @(a)(2* sqrt(mu)*(1+ sqrt(mu*s))*dot(

gradf(xhat+a*vhat),vhat));

23 t3 = @(a)(2*mu*norm(vhat)^2);

24 t4 = @(a)((1+ sqrt(mu*s))^2 * norm(gradf(xhat

+a*vhat))^2);

25 Ast = @(a)(t1(a)+t2(a)+t3(a)+t4(a));

26
27 u1 = @(a)(-alfa*sqrt(mu)*norm(vhat)^2);

28 u2 = @(a)(-alfa*sqrt(mu)*(1+ sqrt(mu*s))/L *

norm(gradf(xhat+a*vhat))^2);

29 Bst = @(a)(u1(a)+u2(a));

30
31 v1 = @(a)(alfa *(1+ sqrt(mu*s))*L/2 *norm(vhat

)^2);

32 v2 = @(a)(alfa/4 *norm(-2*sqrt(mu)*vhat -(1+
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sqrt(mu*s))*gradf(xhat+a*vhat))^2);

33 v3 = @(a)(alfa/4 * (1+ sqrt(mu*s))^2 * norm(

gradf(xhat+a*vhat))^2);

34 Cst = @(a)(v1(a)+v2(a)+v3(a));

35
36 w1 = @(a)((alfa *2*mu-sqrt(mu)*(1+ sqrt(mu*s))

*mu/2)*1/L^2)*norm(gradf(xhat))^2;

37 w2 = @(a)((alfa *0.75- sqrt(mu))*norm(vhat)^2)

;

38 w3 = @(a)((1+ sqrt(mu*s))*(alfa -sqrt(mu))/(2*

L) *norm(gradf(xhat))^2);

39 w4 = @(a)(-a*(1+ sqrt(mu*s))*mu*norm(vhat)^2)

;

40 w5 = @(a)(a/sqrt(mu) *(1+ sqrt(mu*s))*L*norm(

vhat)*norm(gradf(xhat)));

41 Dst = @(a)(w1(a)+w2(a)+w3(a)+w4(a)+w5(a));

42
43 tk = @(a)((-(Ast(a)+Bst(a))+sqrt((Ast(a)+Bst

(a))^2 - 4*Cst(a)*Dst(a)))/(2* Cst(a)));

44 that = tk(0);

45
46 if((Dst(aa) < 0) && (that/2 < tk(aa)))

47 phat = phat + tk(aa)*Xhba(xhat ,vhat ,aa);

48 aa = aa*incrate;

49 else

50 while((Dst(aa) >= 0) || (that/2 >= tk(aa

)))

51 aa = aa*decrate;

52 end

53 phat = phat + tk(aa)*Xhba(xhat ,vhat ,aa);

54 aa = aa*incrate;

55 end

56 phat = phat + tk(aa)*Xhba(xhat ,vhat ,aa);

57 xhat = [phat (1),phat (2)];

58 vhat = [phat (3),phat (4)];

59 i = i+1;

60 end

61 end
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The following is an implementation of algorithm 7

1 function [x1values , x2values , normx , lyapvalues ,

fvalues] = fohdefinitiu2(f, gradf , optim , mu, L,

s, alfa , niter , tol , x0, v0 , lyapunov)

2 disp('foh -definitiu ')
3 xhat = x0;

4 vhat = v0;

5 i = 1;

6 while((norm(gradf(xhat)) > tol) && (i <= niter))

7 x1values(i) = xhat (1);

8 x2values(i) = xhat (2);

9 normx(i) = norm(xhat (1),xhat (2));

10 lyapvalues(i) = lyapunov(xhat ,vhat);

11 fvalues(i) = f(xhat);

12
13 K1 = -vhat /(2* sqrt(mu)) -(1+sqrt(mu*s))/(4*mu

)*gradf(xhat);

14 K2 = xhat + vhat /(2* sqrt(mu))+(1+ sqrt(mu*s))

/(4*mu)*gradf(xhat);

15
16 xt = @(t)(K1*exp(-2*sqrt(mu)*t) -(1+sqrt(mu*s

))/(2* sqrt(mu))*gradf(xhat)*t + K2);

17 vt = @(t)(-2*sqrt(mu)*K1*exp(-2*sqrt(mu)*t)

-(1+sqrt(mu*s))/(2* sqrt(mu))*gradf(xhat))

;

18 a1 = @(t)(vt(t)-vhat);

19 a2 = @(t)(xt(t)-xhat);

20
21 q1 = @(t)((1+ sqrt(mu*s))*dot(gradf(xt(t))-

gradf(xt(0)),vt(t)));

22 q2 = @(t)(-sqrt(mu)*dot(vt(t)-vhat ,vt(t)));

23 q3 = @(t)(-(1+ sqrt(mu*s))*dot(vt(t)-vhat ,

gradf(xhat)));

24 q4 = @(t)(-sqrt(mu)*(1+ sqrt(mu*s))*dot(xt(t)

-xhat ,gradf(xhat)));

25
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26 termh1 = @(t)(q1(t)+q2(t)+q3(t)+q4(t));

27 %termh1 (0)

28
29
30 w1 = @(t)((1+ sqrt(mu*s))*dot(gradf(xhat),vt(

t)-vhat));

31 w2 = @(t)(-sqrt(mu)*dot(vhat ,vt(t)-vhat));

32
33 termh2 = @(t)(w1(t)+w2(t));

34 %termh2 (0)

35
36 r1 = @(t)(alfa *(1+ sqrt(mu*s))*(f(xt(t))-f(

xhat)));

37 r2 = @(t)(alfa/4 *(norm(vt(t))^2-norm(vhat)

^2));

38 r3 = @(t)(alfa/4 * norm(a1(t)+2* sqrt(mu)*a2(

t))^2);

39 r4 = @(t)(alfa/2 * dot(a1(t)+2* sqrt(mu)*a2(t

),vhat));

40 r5 = @(t)(alfa *(1+ sqrt(mu*s))/(2*mu) *t*norm

(gradf(xhat))^2);

41
42 termh3 = @(t)(r1(t)+r2(t)+r3(t)+r4(t)+r5(t))

;

43 %termh3 (0)

44
45 termh4 = (alfa *3/4 - sqrt(mu))*norm(vhat)^2

+ ((1+ sqrt(mu*s))*(alfa -sqrt(mu))/(2*L) +

(alfa *2*mu-sqrt(mu)*(1+ sqrt(mu*s))*mu/2)

*1/L^2)*norm(gradf(xhat))^2;

46 %termh4

47
48 gET = @(t)(termh1(t)+termh2(t)+termh3(t)+

termh4);

49
50 right = 0.5;

51 while(gET(right) < 0)

52 right = right *1.5;

104



53 end

54
55 %gET(0)

56 %gET(right)

57
58 tk = fzero(gET ,[0, right]);

59
60 xhat = xt(tk);

61 vhat = vt(tk);

62 i = i+1;

63 end

64 end
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