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Abstract

This paper studies technical properties of optimization-based controllers, which are obtained by solving
optimization problems where the parameter is the system state and the optimization variable is the input to
the system. We provide a collection of results about their regularity, as well as the existence and uniqueness of
solutions of the closed-loop systems defined by them. In particular, we revisit Robinson’s counterexample,
which shows that, even for relatively well-behaved parametric optimization problems, the corresponding
optimizer might not be locally Lipschitz with respect to the parameter. We show that controllers obtained
from optimization problems whose objective and constraints have the same properties as those in Robinson’s
counterexample enjoy regularity properties that guarantee the existence (and in some cases, uniqueness) of
solutions of the corresponding closed-loop system.
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1. Robinson’s Counterexample

In [1], Robinson introduces the following para-
metric optimization problem: for x = (x1, x2) ∈
R2, consider

min
u∈R4

1

2
u>u (1a)

s.t. A(x)u ≥ b(x) (1b)

where

A(x) =


0 −1 1 0,
0 1 1 0,
−1 0 1 0,
1 0 1 x1

 , b(x) =


1
1
1

1 + x2

 .
Problem (1) is a quadratic program with strongly
convex objective function, smooth objective func-
tion and constraints, and for which Slater’s con-
dition [2, Section 5.2.3] holds for every value of
the parameter (this can be shown by noting that
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û = (0, 0, 2+|x2|, 0) satisfies all constraints strictly).
Despite these nice properties, the parametric solu-
tion of (1) is not locally Lipschitz at (x1, x2) =
(0, 0). Indeed, let u∗ : R2 → R4 be the parametric
solution of (1) and u∗4 : R2 → R denote its fourth
component, which is given by

u∗4(x1, x2) =


0 if x2 ≤ 0,
x2

x1
if x2 ≥ 0, x1 6= 0,

x2
1

2 ≥ x2,
x1(x2+1)
x2
1+2

otherwise.

Figure 1 below depicts u∗4 numerically. The other
components of u∗ are continuously differentiable
and therefore locally Lipschitz. However, if px1 =
(x1,

1
2x

2
1) and qx1 = (x1, 0), we have

‖u∗4(px1
)− u∗4(qx1

)‖
‖px1 − qx1‖

=
1

x1
.

Since x1 can be taken to be arbitrarily small, this
shows that u∗ is not locally Lipschitz at the origin.

2. Related Work: Parametric Optimization
and Optimization-Based Controllers

This section reviews existing literature on para-
metric optimization and, specifically, its connec-
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tion to optimization-based controllers. The the-
ory of parametric optimization [3, 4, 5] considers
optimization problems that depend on a param-
eter and studies the regularity properties of the
minimizers with respect to the parameter. Para-
metric optimization problems arise naturally in
systems and control when designing optimization-
based controllers, which are ubiquitous in numer-
ous areas including safety-critical control [6], model
predictive control [7, 8], and online feedback opti-
mization [9, 10].

Given a system of the form:

ẋ = F (x, u) (2)

with state x ∈ Rn and input u ∈ Rm, an
optimization-based controller is a feedback law ob-
tained by solving a problem of the form

argmin
u∈Rm

f(x, u) (3a)

s.t. g(x, u) ≤ 0 (3b)

with f : Rn×Rm → R and g : Rn×Rm → Rp. Note
that the system state x acts as a parameter in (3).
Assuming that the optimizer of (3) is unique for ev-
ery x ∈ Rn, this defines a function u∗ : Rn → Rm,
mapping each state to the optimizer of (3). The
flexibility of this approach allows to encode desir-
able goals for controller synthesis both in the cost
function f (e.g., minimum control effort) and in the
constraints g (e.g., prescribed decrease of a control
Lyapunov function [11] or forward invariance of a
set through a control barrier function [6]). Once
synthesized, the controller u∗ can be used to close
the loop on the system (2) (here, F : Rn×Rm → Rn
is locally Lipschitz). Given the definition (3), the
theory of parametric optimization can be brought
to bear on characterizing the regularity properties
of u∗. These properties can then be used to certify
existence and uniqueness of solutions of the closed-
loop system

ẋ = F (x, u∗(x)). (4)

For instance, if u∗ is locally Lipschitz, then the
right-hand side of (4) is locally Lipschitz too, and
then the Picard-Lindelöf theorem [12, Theorem
2.2] guarantees existence and uniqueness of solu-
tions for small enough times. It is in this context
that Robinson’s counterexample is problematic, be-
cause it shows that, even for optimization prob-
lems defined by well-behaved data (including the

widespread quadratic programs employed in the de-
sign of safe [6] and stabilizing [11] controllers), the
resulting controller might not be locally Lipschitz.
Additionally, since uniqueness of solutions is a fun-
damental assumption in Nagumo’s theorem [13] to
establish forward invariance of a safe set C of in-
terest, the use of non-Lipschitz controllers might
result in closed-loop systems for which, even if the
rest of the assumptions of Nagumo’s theorem are
met, some of the solutions might leave C. All of
this has motivated the study [14, 15, 16] of addi-
tional conditions (which we make precise later) on
the data of the optimization problem that guaran-
tee local Lipschitz continuity and even stronger reg-
ularity properties of optimization-based controllers.
However, the results in [14] either require the rather
strong assumption of strict complementary slack-
ness, which is not satisfied in many cases of interest,
or are limited to quadratic programs that satisfy a
set of technical conditions. Finally, the regularity
results in our previous work [15, 16] are limited to
second-order convex programs.

3. Paper Contributions

This paper studies technical properties of
optimization-based controllers. We provide a col-
lection of results, most of them novel, and some
from the literature, but restated here for com-
pleteness and from the perspective of optimization-
based control. Our main motivation to write
this paper was to provide an integrative presenta-
tion of insights and results about the regularity of
optimization-based controllers.

On the technical level, the contributions of the
paper are as follows. The first contribution seeks
to characterize the regularity properties enjoyed by
the parametric optimizer of problems defined by ob-
jective and constraints with the same properties as
in Robinson’s counterexample. This is important
as confusion may arise in the literature due to the
loose use of terminology. Indeed, according to [4,
Theorem 6.4], a parametric optimization problem
whose data satisfies the properties of Robinson’s
counterexample has a Lipschitz minimizer! This
apparent contradiction is rooted in different no-
tions of Lipschitz continuity, which this note clari-
fies precisely. We show that, under the conditions of
Robinson’s counterexample, even though the para-
metric optimizer is not necessarily locally Lipschitz,
it enjoys other desirable regularity properties.
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Our second contribution is to show that un-
der these regularity properties, the existence (and
in some cases, uniqueness) of solutions of the
closed-loop system obtained with the correspond-
ing optimization-based controller are guaranteed.
We also introduce an example that shows that, in
general, these conditions are not enough to guaran-
tee uniqueness of solutions of the closed-loop sys-
tem, and stronger conditions are required. For com-
pleteness, we place the results within the state of
the art in the literature, illustrating how differ-
ent properties on the optimization problem trans-
late into regularity properties of the corresponding
optimization-based controller and the existence and
uniqueness of solutions of the closed-loop system.
To the best of our knowledge, such a comprehensive
collection of results is not available in the literature.

Finally, our last contribution is to show that un-
der the conditions of Robinson’s counterexample,
the satisfaction of the sub-tangentiality condition in
Nagumo’s Theorem [13] for a set of interest does not
guarantee that all solutions of the closed-loop sys-
tem remain in the set. However, this can be guar-
anteed under slightly stronger assumptions, which
we make precise.

4. Notions of Regularity of Functions

Throughout the note, we make use of the follow-
ing notions of regularity of functions.

Definition 1. (Notions of Lipschitz continuity): A
function f : Rn → Rq is

• point-Lipschitz at x0 ∈ Rn if there exists a
neighborhood U of x0 and a constant L ≥ 0
such that

‖f(x)− f(x0)‖ ≤ L ‖x− x0‖ , ∀x ∈ U . (5)

• locally Lipschitz at x0 ∈ Rn if there exists a
neighborhood Ũ of x0 and a constant L̃ ≥ 0
such that

‖f(x)− f(y)‖ ≤ L̃ ‖x− y‖ , ∀x, y ∈ Ũ . (6)

The notion of point-Lipschitz continuity is used,
for instance, in [4, Section 6.3] and called Lipschitz
stability, without clearly acknowledging the differ-
ence with the notion of local Lipschitz continuity.
Studying point-Lipschitz continuity is natural in
the context of parametric optimization, as one is

normally interested in understanding the changes
in the solution with respect to a fixed value of the
parameter. Locally Lipschitz functions are point-
Lipschitz, but the converse is not true. For in-
stance, the function f : R → R defined by f(x) =
x sin( 1

x ) if x 6= 0 and f(0) = 0 is point-Lipschitz
but not locally Lipschitz at the origin.

Definition 2. (Hölder property): A function f :
Rn → Rq has the Hölder property at x0 ∈ Rn if
there exists a neighborhood Û of x0 and constants
C > 0, α ∈ (0, 1] such that

‖f(x)− f(y)‖ ≤ C ‖x− y‖α , ∀x, y ∈ Û . (7)

Note that if f is locally Lipschitz at x0 then it
also has the Hölder property at x0 but the converse
is not true.

Definition 3. (Directionally differentiable func-
tion): A function f : Rn → R is directionally dif-
ferentiable if for any vector v ∈ Rn, the limit

lim
h→0

f(x+ hv)− f(x)

h

exists. A vector-valued function is directionally dif-
ferentiable if each of its components is directionally
differentiable.

Let Ω ⊂ Rn. Throughout the paper, we say that
a function ϕ : Ω → Rd belongs to the set Ck(Ω) if
ϕ is k-times continuously differentiable. In the case
where Ω can be partitioned as Ω ⊂ Rm1 × Rm2 ,
and ϕ takes the form (x, u) 7→ ϕ(x, u), we say that
ϕ ∈ Ck,`(Ω) if ϕ is k-times continuously differen-
tiable with respect to x and `-times continuously
differentiable with respect to u.

5. Regularity of Parametric Optimizers un-
der the Properties of Robinson’s Coun-
terexample

We consider parametric optimization problems
whose objective and constraints satisfy the same
conditions as in Robinson’s counterexample. The
following result characterizes the regularity proper-
ties of the corresponding parametric optimizers.

Proposition 4. (Regularity Properties of Para-
metric Optimizer): Suppose that f and g belong to
C2,2(Rn×Rm). Further assume that given x0 ∈ Rn,
f(x0, ·) is strongly convex, g(x0, ·) is convex and
there exists û ∈ Rm such that g(x0, û) < 0. Then,
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(i) There exists a neighborhood Vx0 of x0 such that
u∗ is point-Lipschitz at y for all y ∈ Ṽx0

;

(ii) u∗ has the Hölder property at x0;

(iii) u∗ is directionally differentiable at x0.

Proof. First we note that since f(x0, ·) is strongly
convex and g(x0, ·) is convex for all x0, u∗(x0) is
unique and well-defined for all x0 ∈ Rn.

To prove (i) we use [4, Theorem 6.4]. The fact
that there exists û ∈ Rm such that g(x0, û) <
0 implies that Slater’s Condition holds. Hence,
by [17, Prop. 5.39], since g(x0, ·) is convex,
the Mangasarian-Fromovitz Constraint Qualifica-
tion (MFCQ) holds at (x0, u

∗(x0)). Furthermore,
since f(x0, ·) is strongly convex and g(x0, ·) is con-
vex, the second-order condition SOC2 [4, Definition
6.1] holds. All of this, together with the twice con-
tinuous differentiability of f and g imply, by [4,
Theorem 6.4], that u∗ is point-Lipschitz at x0.
Now, since g is continuous, there exists a neigh-
borhood Vx0

of x0 such that g(y, û) < 0 for all
y ∈ Vx0

. By repeating the same argument, u∗ is
point-Lipschitz at y for all y ∈ Vx0

.
Now let us prove (ii). We use [18, Theorem 2.1],

which gives a sufficient condition for the solution
of a variational inequality to have the Hölder prop-
erty. We first note that a constrained optimization
problem of the form (3) can be posed as a varia-
tional inequality (cf. [19]). Since f is twice continu-
ously differentiable and strongly convex, conditions
(2.1) and (2.2) in [18, Theorem 2.1] hold. More-
over, since MFCQ holds at (x0, u

∗(x0)) (because
SC holds), by [20, Remark 3.6] the constraint set is
pseudo-Lipschitzian [18, Definition 1.1]. All of this
implies by [18, Theorem 2.1] that u∗ has the Hölder
property at x0.

Finally, (iii) follows from the fact that SC implies
MFCQ and [21, Theorem 1].

In Proposition 4, note that neither (i) implies (ii)
nor the converse. Even though the parametric op-
timizer in Robinson’s counterexample is not locally
Lipschitz, Proposition 4 shows that it enjoys other,
slightly weaker, regularity properties. In particular,
this result implies that u∗4, the fourth component of
the parametric optimizer of Robinson’s counterex-
ample, is continuous, cf. Figure 1.

The following two examples show that the results
from Proposition 4 do not hold if the assumptions
are slightly weakened.

Example 5. (Discontinuous optimizer without
Slater’s condition): The following example, taken

Figure 1: Numerical depiction of the fourth component of the
parametric optimizer of Robinson’s counterexample, cf. (1).
The plot shows that it is continuous at the origin, in agree-
ment with Proposition 4.

from [14, Section VI], shows that if Slater’s condi-
tion does not hold, then continuity of the paramet-
ric optimizer is not guaranteed even if the rest of
assumptions from Proposition 4 do hold:

u∗(x) = argmin
u∈R

1

2
u2 − 2u, (8a)

s.t. xu ≤ 0. (8b)

Indeed, the objective function and constraint of (8)
are twice continuously differentiable, the objective
function is strongly convex and the constraint is
convex for any x ∈ R. However, Slater’s condition
does not hold at x = 0. In fact, û∗, which is given by

û∗(x) =

{
2 if x ≤ 0,

0 else,

is discontinuous at x = 0. •

Example 6. (Not point-Lipschitz optimizer with-
out differentiability of problem data with respect
to the parameter): If f and g are not differentiable
with respect to the parameter x but the rest of the
assumptions of Proposition 4 hold, the following
example, inspired by Robinson’s counterexample,
shows that the parametric optimizer is not neces-
sarily point-Lipschitz. Let x = (x1, x2) ∈ R2 and
consider (1) with

A(x) =


0 −1 1 0,
0 1 1 0,
−1 0 1 0,

1 0 1
√
|x1|

 , b(x) =


1
1
1

1 + x2

 .
Let ũ∗ : R2 → R4 be its parametric solution and let
ũ∗4 : R2 → R denote its fourth component, which is
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given by

ũ∗4(x) =


0 if x2 ≤ 0,
x2√
|x1|

if x2 ≥ 0, x1 6= 0, |x1|
2 ≥ x2,√

|x1|(x2+1)

|x1|+2 otherwise.

Let x1 > 0 and define px1
= (x1,

|x1|
2 ). Note that

‖ũ∗4(px1
)− ũ∗4(0)‖

‖px1
− 0‖

=
1√

5|x1|
.

Since x1 can be taken to be arbitrarily small, ũ∗ is
not point-Lipschitz at the origin. However, because
f and g, as well as their first and second derivatives
with respect to u, are continuous in u and x, and
the rest of assumptions of Proposition 4 hold, then
by [22, Theorem 5.3], the corresponding parametric
optimizer, ũ∗4, is continuous. •

6. Existence and Uniqueness of Solutions
under Optimization-Based Controllers

Here, we leverage the regularity properties estab-
lished in Section 5 to study existence and unique-
ness of solutions for the closed-loop system under
the optimization-based controller. The following re-
sult establishes existence of solutions.

Proposition 7. (Existence of solutions for the
closed-loop system): Suppose that f and g are twice
continuously differentiable in Rn×Rm. Further as-
sume that given x0 ∈ Rn, f(·, x0) is strongly convex,
g(·, x0) is convex and there exists û ∈ Rm such that
g(û, x0) < 0. Let F : Rn × Rm → Rn be locally
Lipschitz. Then, there exists δ > 0 such that the
differential equation (4) has at least one solution
x : (−δ, δ)→ Rn with initial condition x(0) = x0.

Proof. By Proposition 4, u∗ has the Hölder prop-
erty at x0 and there exists a neighborhood Vx0 of x0
such that u∗ is point-Lipschitz at y for all y ∈ Vx0

.
Both of these properties imply that u∗ is continu-
ous in a neighborhood of x0. The result follows by
Peano’s existence theorem [23, Theorem 2.1].

Next, we study uniqueness of solutions. The
question we address is whether the assumptions of
Proposition 7 are sufficient to ensure this property.
We first note that the Hölder property does not
imply uniqueness, even in simple one-dimensional
examples. For example, the differential equation

ẋ = x1/3 has the Hölder property at 0 but in-
finitely many solutions starting from the origin.
The next example shows that, in general, point-
Lipschitz continuity does not imply uniqueness of
solutions either.

Example 8. (Point-Lipschitz differential equation
with non-unique solutions): Let u∗ : R2 → R4 be
the parametric optimizer of Robinson’s counterex-
ample. Consider the dynamical system

ẋ1 =
1

2
, (9a)

ẋ2 = u∗4(x1, x2), (9b)

with initial condition (x1(0), x2(0)) = (0, 0). By
Proposition 4, the vector field in (9) is point-
Lipschitz at the origin. However, (9) admits the
following two distinct solutions starting from the
origin: y1(t) := ( 1

2 t, 0) and y2(t) := ( 1
2 t,

1
8 t

2), cf.
Figure 2. •

Figure 2: The blue arrows depict the vector field (9). The
dashed red and green curves depict the two solutions y1 and
y2 starting from the origin, where the vector field is point-
Lipschitz but not locally Lipschitz.

Interestingly, the next result shows that point-
Lipschitz continuity guarantees uniqueness of solu-
tions starting from equilibria.

Proposition 9. (Point-Lipschitz continuity and
Uniqueness): Let F̃ : Rn → Rn be point-Lipschitz
at x0 ∈ Rn and F̃ (x0) = 0. Then the function
x(t) = x0 for all t ≥ 0 is the unique solution to the
differential equation ẋ = F̃ (x) with initial condition
x(0) = x0.

Proof. Let δ > 0 and L be the point-Lipschitz con-
tinuity constant of F̃ and take δ < 1

L . Suppose
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that there exists another solution y : [0, δ) → Rn
starting from x0. Then, supt∈[0,δ) ‖y(t)− x0‖ > 0.
Moreover,

sup
t∈[0,δ)

‖y(t)− x0‖ = sup
t∈[0,δ)

∥∥∥∥∫ t

0

F̃ (y(s))ds

∥∥∥∥ =

sup
t∈[0,δ)

∥∥∥∥∫ t

0

(
F̃ (y(s))− F̃ (x0)

)
ds

∥∥∥∥ ≤
sup
t∈[0,δ)

∫ t

0

L ‖y(s)− x0‖ ds ≤

Lδ sup
t∈[0,δ]

‖y(t)− x0‖ < sup
t∈[0,δ]

‖y(t)− x0‖

where in the last inequality we have used the fact
that supt∈[0,δ) ‖y(t)− x0‖ > 0. We hence reach a
contradiction, which means that the constant solu-
tion is the only solution for t ∈ [0, δ). By repeating
the same argument at time δ, we can extend this
constant solution for all positive times.

This result implies that in one dimension point-
Lipschitz ODEs have unique solutions.

Corollary 10. (Point-Lipschitz continuity implies
uniqueness in one dimension): Let F̃ : R → R
be continuous in a neighborhood of x0 and point-
Lipschitz at x0. Then, the differential equation
ẋ = F̃ (x) with initial condition x(0) = x0 has a
unique solution.

Proof. If F̃ (x0) 6= 0, by [24, Theorem 1.2.7], the dif-
ferential equation has only one solution. If F̃ (x0) =
0, the result follows from Proposition 9.

Since in general the assumptions of Proposi-
tion 7 are not sufficient to ensure uniqueness of
solutions of the closed-loop system, additional as-
sumptions must be made. Strengthening these as-
sumptions has been explored in the literature [14]
of optimization-based controllers. Under the as-
sumption that both MFCQ and the constant-rank
constraint qualification (CRCQ) hold, the paramet-
ric solution u∗ is locally Lipschitz [25, Theorem
3.6] and the closed-loop system has a unique so-
lution. The same conclusion can be obtained un-
der the linear independence constraint qualification
(LICQ) [26, Theorem 4.1]. Moreover, under the ad-
ditional assumption of strict complementary slack-
ness (SCS) [27, Theorem 2.1], the parametric solu-
tion u∗ is continuously differentiable, so the closed-
loop system has unique solutions. This last point
was already noted in [14, Theorem 1].

On the other hand, if Slater’s condition does not
hold but the rest of assumptions of Proposition 7
hold, Example 5 shows that u∗ can be discontin-
uous, in which case neither existence nor unique-
ness of solutions is guaranteed. In the case where
f and g are not differentiable with respect to the
parameter, but the rest of assumptions of Proposi-
tion 7 hold, Example 6 shows that u∗ is continuous
but not necessarily point-Lipschitz. Therefore, in
this case existence is guaranteed but uniqueness is
not. Finally, if f is not strongly convex or g is not
convex, the optimizer u∗ is not guaranteed to be
single-valued, which means that the usual notions
of regularity of the controller and of solutions of the
closed-loop system are not well defined. Table 1
summarizes these results.

7. Forward Invariance Properties of
Optimization-Based Controllers

In this section we study conditions that guar-
antee the forward invariance of a set for the
closed-loop system under an optimization-based
controller. First, let us recall the notion of tangent
cone to a set C ⊂ Rn:

Definition 11. The tangent cone to C ⊂ Rn at
x ∈ Rn is

TC(x) =

{
v ∈ Rn | lim inf

h→0

dist(x+ hv, C)
h

= 0

}
.

The basic result concerning forward invariance is
the following:

Theorem 12. (Nagumo’s Theorem [13, 28] ): Let
F̃ : Rn → Rn, and consider the system ẋ = F̃ (x),
and assume that, for each initial condition in a set
D ⊂ Rn, it admits a globally unique solution. Let
C ⊂ Rn be a closed set. Then the set C is forward
invariant for the system if and only if F̃ (x) ∈ TC(x)
for all x ∈ C.

The condition that F̃ (x) ∈ TC(x) for all x ∈ C
is called the sub-tangentiality condition, and can be
enforced using the constraints of an optimization-
based feedback controller of the form (3). Indeed,
suppose that C is parameterized as C = {x ∈ Rn |
hj(x) ≥ 0, 1 ≤ j ≤ p}, where hj : Rn → R are
continuously differentiable for j = 1, . . . , p, and the
dynamics take the form

ẋ = F (x, u) = F0(x) +

m∑
i=1

uiFi(x) (10)
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Assumptions Single-valued Regularity of u∗ Existence Uniqueness

f, g ∈ C2,2(Rn × Rm)
f(x0, ·) strongly convex

g(x0, ·) convex
LICQ and SCS

3
C1(Rm)
cf. [27]

3 3

f, g ∈ C2,2(Rn × Rm)
f(x0, ·) strongly convex

g(x0, ·) convex
LICQ

3
Locally Lipschitz

cf. [26]
3 3

f, g ∈ C1,2(Rn × Rm)
f(x0, ·) strongly convex

g(x0, ·) convex
CRCQ and MFCQ

3
Locally Lipschitz

cf. [25]
3 3

f, g ∈ C1,2(Rn × Rm)
f(x0, ·) strongly convex

g(x0, ·) convex
Slater’s condition

3 cf. Proposition 4 3

Only in special cases
cf. Proposition 9

Corollary 10, Example 9

f, g ∈ C0,2(Rn × Rm)
f(x0, ·) strongly convex

g(x0, ·) convex
Slater’s Condition

3

Continuous, but might
not be point-Lipschitz

cf. Example 6
3 7

f, g ∈ C2,2(Rn × Rm)
f(x0, ·) strongly convex

g(x0, ·) convex
3

Might be discontinuous
cf. Example 5

7 7

f, g ∈ C2,2(Rn × Rm) 7 — — —

Table 1: Table showcasing the properties of optimization-based controllers under different assumptions. The first column
describes the different assumptions. The second column describes whether the optimizer u∗ is guaranteed to be single-valued.
The third column describes the regularity properties of u∗. The fourth (resp. fifth) column describes whether existence (resp.
uniqueness) of classical solutions of the closed-loop system (4) is guaranteed (provided that F : Rn × Rm → Rn is locally
Lipschitz). Recall that LICQ stands for linear independence constraint qualification, SCS stands for strict complementary
slackness, MFCQ stands for Mangasarian-Fromovitz Constraint Qualification and CRCQ stands for constant rank constraint
qualification.

for smooth functions Fi : Rn → Rn for i ∈
{0, . . . ,m}. Next, define A(x) ∈ Rp×m and b(x) ∈
Rp as

A(x) =

LF1
h1(x) . . . LFm

h1(x)
...

. . .
...

LF1
hp(x) . . . LFm

hp(x)



b(x) =

 −α(h1(x))− LF0
h1(x)

...
−α(hm(x))− LF0

hm(x),


where α is a class-K function. Let Aj(x) denote the
jth row of A(x), and for J ⊂ {1, . . . , p}, let AJ(x)
denote the matrix consisting of the rows of A(x)
corresponding to j ∈ J .

In the literature on optimization-based control
design [29], the feasibility of the system Aj(x)u ≥
bj(x) for all x ∈ Rn such that hj(x) ≥ 0 is equiv-
alent to hj being a control barrier function for the

set {x ∈ Rn | hj(x) ≥ 0}. Since we are consid-
ering the case where C is possibly parameterized
by multiple inequalities, here we make the stronger
assumption that the system A(x)u ≥ b(x) (where
the inequality holds componentwise) is feasible for
all x ∈ C. In this case, if C satisfies an appropri-
ate constraint qualification condition (e.g., MFCQ
or LICQ) and u∗ : Rn → Rm is a feedback con-
troller such that A(x)u∗(x) ≥ b(x) for all x ∈ C,
then the closed-loop dynamics satisfies the sub-
tangentiality condition F (x, u∗(x)) ∈ TC(x). Such
a controller can be obtained from the solution of
a parametric optimization problem of the form (3)
where g(x, u) = b(x)−A(x)u.

To show invariance using Theorem 12, one needs
to additionally ensure that the closed-loop dynam-
ics has unique solutions. The conditions discussed
in Section 6 and summarized in Table 1 can be
translated into easily checkable conditions on the
objective function and A(x) and b(x). The follow-
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ing result uses [25, Theorem 3.6] to ensure unique-
ness, and therefore forward invariance.

Theorem 13. (Sufficient conditions for forward in-
variance of C with respect to closed-loop dynamics):
Consider the dynamics (10), and the optimization
problem (3) where f ∈ C1,2(Rn × Rm) is strongly
convex, and g(x, u) = b(x)−A(x)u. If

• For all x ∈ C, there exists u ∈ Rm such
that A(x)u > b(x), and

• For all x ∈ C, there is an open set Ux ⊂ Rn
containing x such that, for all J ⊂ {1, . . . , p},
the matrix AJ(y) has constant rank for all y ∈
Ux,

Then the closed-loop system under the feedback con-
troller specified by the solution to (3) has unique
solutions, and C is forward invariant.

In the case where the closed-loop dynamics are
point-Lipschitz, solutions are not necessarily unique
and therefore forward invariance of C cannot be
guaranteed by Theorem 12. In fact, the following is
an example of a system where the sub-tangentiality
condition holds but there exist solutions starting
in C that eventually leave.

Example 14. (Point-Lipschitz differential equa-
tion violating forward invariance): Let C ={

(x1, x2) ∈ R2 | x2 ≤ 0
}

and consider the system
with the feedback controller defined in Example 9.
Because C satisfies LICQ, the tangent cone can
be computed as TC(x1, x2) = R2 if x2 < 0, and
TC(x1, 0) = {(ξ1, ξ2) | ξ2 ≤ 0}. The closed-loop
system satisfies F (x, u∗(x)) = ( 1

2 , u
∗
4(x1, x2)) ∈

TC(x1, x2) for all (x1, x2) ∈ C. However, the so-
lution y2(t) = ( 1

2 t,
1
8 t

2) satisfies y2(0) ∈ C and
y2(t) /∈ C for all t > 0. •

Example 9 is problematic because it shows that
even if the sub-tangentiality condition for a safe
set C is included as one of the constraints of the
optimization-based controller, if the solutions of the
closed-loop system are not unique, some of the solu-
tions might leave the safe set C. However, using the
notion of minimal barrier functions [30], the follow-
ing result gives a condition for forward invariance
that can be applied to systems with non-unique so-
lutions.

Theorem 15. (Minimal Barrier Functions, [30,
Theorem 1]): Let F̃ : Rn → Rn be a continu-
ous function and consider the system ẋ = F̃ (x).

Let h : Rn → R be a continuously differentiable
function and let C = {x ∈ Rn | h(x) ≥ 0} be a
nonempty set. If h is a minimal barrier func-
tion (cf. [30, Definition 2]), then any solution of
ẋ = F̃ (x) with initial condition in C remains in C
for all positive times.

A simple scenario in which h is a minimal bar-
rier function is if there exists an strictly increasing
function α : R→ R with α(0) = 0 and an open set
D with C ⊂ D such that ∇h(x)>F̃ (x) ≥ −α(h(x))
for all x ∈ D. Such a set D and class K function
α cannot be found in Example 14. Since Theo-
rem 15 only requires F̃ to be continuous, the sys-
tem ẋ = F̃ (x) might have multiple solutions start-
ing from the same initial condition. However, the
result ensures that if the initial condition is in C,
then all solutions remain in C for all positive times.
Moreover, since point-Lipschitz functions are con-
tinuous, Theorem 15 can be applied to differen-
tial equations defined by point-Lipschitz functions.
Therefore, if one of the constraints in (3) corre-
sponds to the minimal control barrier function con-
dition (cf. [30, Definition 3]) of a function h, and
if the resulting controller is point-Lipschitz (e.g.,
by satisfying the hypothesis of Proposition 4), then
all solutions of the closed-loop system that start in
C := {x ∈ Rn | h(x) ≥ 0} remain in C for all posi-
tive times.

8. Conclusions

This note has studied different technical prop-
erties of optimization-based controllers. We have
provided an integrative presentation of insights and
results about the regularity properties of such con-
trollers, as well as the existence and uniqueness of
solutions of closed-loop systems defined by them. In
particular, we have sought to clarify the properties
enjoyed by parametric optimizers arising from op-
timization problems whose data satisfies the same
properties as in Robinson’s counterexample. We
have shown that, even though the parametric opti-
mizer in Robinson’s counterexample is not locally
Lipschitz, it enjoys other important regularity prop-
erties, like point-Lipschitz continuity. These are
enough to guarantee existence of solutions of dy-
namical systems driven by optimization-based con-
trollers but, in general, not uniqueness (for which
otherwise stronger constraint qualifications must be
satisfied), as we have illustrated with an example.
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We have identified cases where point-Lipschitz con-
tinuity is enough to guarantee uniqueness of so-
lutions. Finally, we have also studied conditions
that ensure that all (not necessarily unique) solu-
tions of the closed-loop system obtained from an
optimization-based controller remain in a safe set of
interest. The results presented in this note open the
possibility of studying weaker conditions on the op-
timization problem that guarantee existence of so-
lutions of the closed-loop system, as well as forward
invariance guarantees for those solutions, possibly
also using notions of solutions for discontinuous sys-
tems like Carathéodory or Krasovskii solutions.
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