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Abstract— This paper considers the problem of designing a
dynamical system to solve constrained optimization problems in
a distributed way and in an anytime fashion (i.e., such that the
feasible set is forward invariant). For problems with separable
objective function and constraints, we design an algorithm with
the desired properties and establish its convergence. Simulations
illustrate our results.

I. INTRODUCTION

Distributed optimization methods are a popular tool for
solving several engineering problems like parameter es-
timation, resource allocation in communication networks,
source localization, etc. In several of these applications,
feedback controllers are often implemented as the solution
of such problems on a physical plant. In this context, the
safe operation requirements of the system are encoded as
constraints of the optimization problem. This approach is
very versatile, but the implementation of such controllers
faces several challenges. On the one hand, the algorithm
solving the optimization problem may be terminated at any
time, and hence feasibility must be maintained throughout
its execution. We refer to an algorithm with this property
as anytime. Moreover, it must retain its distributed and
scalable character, so that each agent can implement it
by communicating exclusively with its neighbors and can
do so in an efficient manner independently of the size of
the network. Designing algorithms that combine all these
objectives together and are anytime, distributed, scalable
and have provable convergence guarantees is a challenging
problem.

Literature Review: In this work we take the viewpoint
of optimization algorithms as continuous-time dynamical
systems (cf. [1], [2]), which has recently proven to be a very
powerful paradigm in applications where the optimization
problem is in a feedback loop with a plant [3]. The problem
of designing distributed algorithms for constrained optimiza-
tion is well studied in the literature. The survey papers [4],
[5] cover this topic exhaustively. Of particular interest to
us are primal-dual and projected saddle-point dynamics [6],
which define dynamical systems that solve constrained op-
timization problems. Although these works have provable
convergence guarantees, the trajectories generated by the
proposed dynamical systems are in general not guaranteed to
be feasible throughout its execution. This anytime property is
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well-studied in the optimization literature and dates back to
the mid-1980s (cf. [7], [8]) in the context of time-dependent
planning. Our work here is related to [9]–[11], which design
dynamical systems that solve nonlinear programs in contin-
uous time with the anytime property. However, the literature
on anytime algorithms generally is not concerned in making
them amenable to a distributed implementation. An exception
is the relaxed economic dispatch problem, which involves a
convex separable objective function and globally coupling
affine equality constraints. For this problem, [12] gives a
distributed anytime algorithm that converges to the global
optimum. The problem of designing distributed anytime
algorithms for constrained optimization problems is very
relevant in the control barrier function (CBF) literature [13],
[14]. This is because CBF-based controllers for multiagent
systems can be obtained as the solution of a network op-
timization problem, where the system is guaranteed to be
safe only if its constraints are satisfied at all times. The
works [15]–[17] tackle this problem for CBF-based quadratic
programs (QPs), where a centralized QP is split into local
QPs whose solution is guaranteed to preserve the safety
constraints at all times. However, the solution of these local
QPs might be suboptimal with respect to the centralized QP.
The recent work [18] designs a distributed algorithm that is
guaranteed to satisfy the constraints of the CBF-based QP
at all times and converge to its state-dependent optimizer in
finite time. However, their algorithm is restricted to a limited
class of quadratic programs and plant dynamics and is not
easily generalizable to general convex programs.

Statement of Contributions: In this paper we introduce
a continuous-time dynamical system to solve convex opti-
mization problems with separable objective function and con-
straints in a distributed and anytime fashion. The constraints
couple the decision variables of all agents and this poses a
difficulty in the design of distributed algorithms that solve
such problems. We first show that the separable structure
permits the intoduction of auxiliary variables to reformulate
the original problem into one with local constraints while still
preserving the same solution set. However, this reformulation
still does not allow to fully decouple the optimization prob-
lem into one per agent because the auxiliary variables require
coordination. In order to sort this hurdle, our technical
approach constructs a dynamical system by combining the
use of projected saddle-point dynamics, which are distributed
but not anytime, and the safe gradient flow, which is anytime
but not distributed. First, we establish the well-posedness of
the proposed dynamical system. Second, we show that it
is distributed, exhibits the anytime property and is scalable.



Finally, we prove that all trajectories with feasible initial
condition converge to a neighborhood of the optimizer, which
can be made arbitrarily small by tuning a design parameter
accordingly. Moreover, in the case where the feasible set is
bounded, we show that all trajectories with feasible initial
condition exactly converge to the optimizer.

II. PRELIMINARIES

This section presents background on dynamical systems
that solve constrained optimization problems1.

Safe Gradient Flow: Given continuously differentiable
functions f ∶ Rn → R, g ∶ Rn → Rp, h ∶ Rn → Rq , consider
the constrained nonlinear program

min
x∈Rn

f(x), (1)

s.t. g(x) ≤ 0,

h(x) = 0.

Let F = {x ∈ Rn ∶ g(x) ≤ 0, h(x) = 0} denote
the constraint set and XKKT = {x∗ ∈ Rn ∶ ∃(u∗, v∗) ∈
Rp × Rq such that (x∗, u∗, v∗) is a KKT point of (1)}. We
are interested in solving the optimization problem with an
algorithm that respects its constraints at all times of its
evolution. Given α > 0, the safe gradient flow, cf. [11], is
the dynamical system ẋ = Fα(x), where

Fα(x) = arg min
ξ∈Rn

1

2
∥ξ +∇f(x)∥2

s.t.
∂g(x)
∂x

ξ ≤ −αg(x), (2)

1Throughout the paper we denote by R and R>0 the set of real and
nonnegative real numbers, respectively. Given x ∈ Rn, ∥x∥ denotes its
Euclidean norm. For a ∈ R and b ∈ R≥0, we let

[a]+b = {a, if b > 0,

max{0, a}, if b = 0.

For vectors a ∈ Rn and b ∈ Rn≥0, [a]+b denotes the vector whose i-th
component is [ai]+bi , for i ∈ {1, . . . , n}. We also write 0n = (0, . . . ,0) ∈
Rn. For a real-valued function F ∶ Rn ×Rm → R, we denote by ∇xF and
∇yF the column vector of partial derivatives of F with respect to the first
and second arguments, respectively. Given a set of functions g1, . . . , gk ,
we let Ig1,...,gk(x) = {1 ≤ i ≤ k ∶ gi(x) = 0}. For matrices A ∈ Rn×m
and B ∈ Rp×q , we let A ⊗ B denote their Kronecker product. Given a
set P ⊆ Rn and a set of variables ξ = {xi1 , xi2 , . . . , xik}, we denote by
ΠξP = {(xi1 , xi2 , . . . , xik) ∈ Rk ∶ x ∈ P} the projection of P onto the ξ
variables. Given sets S1, . . . , Sk , ⨉ki=1 Si denotes their Cartesian product.
An undirected graph is a pair G = (V,E), where V = {1, . . . ,N} is a
finite set called the vertex set, E ⊆ V × V is called the edge set where
(i, j) ∈ E if and only if (j, i) ∈ E . The set of neighbors of node i is
denoted by Ni = {j ∈ I ∶ (i, j) ∈ E}. The adjacency matrix A ∈ R∣V ∣×∣V ∣≥0
of the graph G satisfies the property [A]i,j = [A]j,i = 1 if (i, j) ∈ E and
[A]i,j = 0 otherwise. The degree matrix D of G is the diagonal matrix
defined by [D]i,i = ∣Ni∣ for all i ∈ {1, . . . , ∣V ∣}. The Laplacian matrix of
G is L = D −A. Let F ∶ Rn → Rn be a locally Lipschitz vector field and
consider the dynamical system ẋ = F (x), with flow map Φt ∶ Rn → Rn.
This means that Φt(x) = x(t), where x(t) is the unique solution of the
dynamical system with x(0) = x. A set K ⊆ Rn is (positively) forward
invariant if x ∈ K implies that Φt(x) ∈ K for all t ≥ 0. A set A ⊆ K
is Lyapunov stable relative to K if, for every open set U containing A,
there exists an open set Ũ also containing A such that for all x ∈ Ũ ∩K,
Φt(x) ∈ U ∩K for all t ≥ 0. A set A ⊆ K is asymptotically stable relative
to K if it is Lyapunov stable relative to K and there is an open set U
containing A such that Φt(x)→ A as t→∞ for all x ∈ U ∩K.

∂h(x)
∂x

ξ = −αh(x).

The direction prescribed by Fα can be interpreted as that
closest to the gradient descent direction −∇f while ensuring
that the constraints defining F are not violated. The next
result gathers important properties of the safe gradient flow.

Proposition 2.1: (Properties of the safe gradient flow [11,
Proposition 5.1, Proposition 5.6 and Corollary 5.9]): Sup-
pose f , g and h are continuously differentiable and their
derivatives are locally Lipschitz. Then,

(i) there exists an open neighborhood U containing F
such that (2) is well-defined;

(ii) Fα is locally Lipschitz on U ;
(iii) the Lagrange multipliers of (2) are unique and locally

Lipschitz as a function of x on U ;
(iv) the feasible set F is forward invariant and asymptoti-

cally stable under (2);
(v) Fα(x∗) = 0 if and only if x∗ ∈XKKT;

(vi) if x∗ is a strict local minimizer of f and an isolated
equilibrium of the safe gradient flow, then x∗ is asymp-
totically stable relative to F .

Projected Saddle-Point Dynamics: We recall here the
notion of projected saddle-point dynamics following [19].
Consider again the optimization problem (1), with continu-
ously differentiable functions f , g and h whose derivatives
are locally Lipschitz, and let L ∶ Rn × Rm≥0 × Rp be the
associated Lagrangian,

L(x,λ,µ) = f(x) + λT g(x) + µTh(x).

We define the projected saddle-point dynamics for L as:

ẋ = −∇xL(x,λ,µ), (3a)

λ̇ = [∇λL(x,λ,µ)]+λ, (3b)
µ̇ = ∇µL(x,λ,µ). (3c)

If f is strongly convex, g is convex and h is affine, the
saddle point of L is unique and corresponds to the KKT
point of (1). Moreover, [19, Theorem 5.1] ensures that the
saddle point of L is globally asymptotically stable under the
dynamics (3).

III. PROBLEM STATEMENT

Consider a network composed by agents {1, . . . ,N}
whose communication topology is described by a connected
undirected graph G. An edge (i, j) represents the fact that
agent i can receive information from agent j and vice versa.
We refer to an algorithm run by the network as distributed
if each agent can execute it with the information available
to it and its neighbors.

For each i ∈ {1, . . . ,N}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q}
let fi ∶ Rn → R be a strongly convex and continuously
differentiable function with locally Lipschitz derivatives, gki ∶
Rn → R be a convex and continuously differentiable function
with locally Lipschitz derivatives and hli ∶ Rn → R be an
affine function. We let x = [x1, . . . , xN ] ∈ RnN . Consider



the following optimization problem with separable objective
function and constraints:

min
x∈RnN

N

∑
i=1

fi(xi), (4)

s.t.
N

∑
i=1

gki (xi) ≤ 0, k ∈ {1, . . . , p},

N

∑
i=1

hli(xi) = 0, l ∈ {1, . . . , q}.

Since the objective function is strongly convex and the fea-
sible set is convex, this program has a unique optimizer x∗.
Note that, even though the objective function is separable, the
structure of the constraints couples the decision variables of
the agents. This makes challenging the design of distributed
algorithmic solutions of (4).

Remark 3.1: (Separability structure): Problems of the
form (4) arise in multiple applications, including commu-
nications [20], economic dispatch of power systems [12],
optimal power flow [21], resource allocation [22], and safe
swarm behavior using control barrier functions [15]. Also,
given convex sets Xi, i ∈ {1, . . . ,N}, a common problem
considered in the distributed optimization literature [23] is

min
x∈Rn

N

∑
i=1

fi(x),

s.t. x ∈ ∩Ni=1Xi.

When Xi = {x ∈ Rn ∶ ḡi(x) ≤ 0} ⊆ Rn for a continuously
differentiable convex function with locally Lipschitz deriva-
tives ḡi ∶ Rn → Rmi , for i ∈ {1, . . . ,N}, the optimization
can be reformulated as

min
x∈RnN

N

∑
i=1

fi(xi),

s.t. ḡi(xi) ≤ 0, i ∈ {1, . . . ,N},
(L⊗ In)x = 0Nn,

which is of the form (4). ●
Throughout the paper, we denote f(x) = ∑Ni=1 fi(xi),

gk(x) = ∑Ni=1 g
k
i (xi) for k ∈ {1, . . . , p} and hl(x) =

∑Ni=1 g
l
i(xi) for l ∈ {1, . . . , q}, and write the feasible set of (4)

as

F = {x ∈ RnN ∶ gk(x) ≤ 0, ∀k ∈ {1, . . . , p},
hl(x) ≤ 0, ∀l ∈ {1, . . . , q}}.

We also make the following assumption.
Assumption 1: (Linear independence constraint qualifi-

cation for separable constraints): For all x ∈ RnN , the
vectors {∇gk(x)}k∈Ig1,...,gp(x) ∪ {∇hl(x)}1≤l≤q are linearly
independent.

Assumption 1 is common and guarantees that the KKT
conditions are necessary and sufficient for the optimality
of (4).

Our goal is to design an algorithm, in the form of a locally
Lipschitz dynamical system, such that

(i) is distributed, i.e., each agent can execute it with
locally available information;

(ii) is anytime, i.e., the feasible set F is forward invariant;
(iii) solves (4), i.e., all trajectories starting in F converge

to its optimizer.
Even though algorithmic solutions exist in the literature that
enjoy some of these properties (e.g., the projected saddle-
point dynamics enjoys (i) and (iii) for certain classes of
optimization problems), the design of an algorithm that
enjoys all three is challenging.

IV. DESIGN OF ALGORITHMIC SOLUTION

Here we propose an algorithmic solution to the constrained
program (4) to meet the requirements stated in Section III.
Our exposition proceeds by first reformulating the optimiza-
tion problem and then building on the projected saddle-
point dynamics and the safe gradient flow to synthesize a
coordination algorithm with the desired properties.

A. Reformulation using constraint mismatch variables

In this section we provide an equivalent formulation of (4)
that addresses the coupling among the agents’ decision
variables arising from the structure of the constraints. The
basic idea to “decouple” them is to introduce, following [24],
constraint-mismatch variables which help agents keep track
of local constraints while collectively satisfying the original
constraints. Formally, to the state of each agent, we add one
variable per constraint: yki for agent i and the kth inequality
constraint and zlj for agent i and the lth equality constraint.
For convenience, we use the notation x = [x1, . . . , xN ],
yi = [y1

i , . . . , y
p
i ], zi = [z1

i , . . . , z
p
i ], y = [y1, . . . , yN ], z =

[z1, . . . , zN ]. Consider then the following problem

min
x∈RnN ,y∈RNp,z∈RNq

N

∑
i=1

fi(xi), (5)

s.t. gki (xi) + ∑
j∈Ni

(yki − ykj ) ≤ 0,

hli(xi) + ∑
j∈Ni

(zki − zkj ) = 0,

i ∈ {1, . . . ,N}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q}.

Note that, in this formulation, constraints are now locally
expressible, meaning that agent i ∈ {1, . . . ,N} can evaluate
the ones corresponding to gki and hli with information from
its neighbors. Let µi = [µ1

i , . . . , µ
p
i ], λi = [λ1

i , . . . , λ
p
i ],

λ = [λ1, . . . , λN ] and µ = [µ1, . . . , µN ] be the Lagrange
multipliers for the constraints in (5). We next show that the
optimizer in x of (5) is x∗, the optimizer of (4).

Proposition 4.1: (Equivalence between the two formula-
tions): Let F∗r be the solution set of (5). Then, x∗ = Πx(F∗r ).

Proof: Note that (4) is equivalent to

min
x∈RnN ,s∈Rp

N

∑
i=1

fi(xi),

s.t.
N

∑
i=1

gki (xi) + sk = 0, sk ≥ 0,

N

∑
i=1

hli(xi) = 0, (6)

k ∈ {1, . . . , p}, l ∈ {1, . . . , q}.



and (5) is equivalent to

min
x∈RNn,y∈RNp,s∈RNp,z∈RNq

N

∑
i=1

fi(xi),

s.t. gki (xi) + ∑
j∈Ni

(yki − ykj ) + ski = 0, ski ≥ 0,

hli(xi) + ∑
j∈Ni

(zli − zlj) = 0, (7)

i ∈ {1, . . . ,N}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q}.

Now the proof follows a similar reasoning as the proof
from [24, Proposition 4.2]. We only need to show that the
feasible sets of (6) and (7) are the same, because their
objective functions coincide. First, if (x̂, ŷ, ŝ, ẑ) ∈ RNn ×
RNp ×RNp ×RNq is a feasible point for (7), then by adding
up all constraints for i ∈ {1, . . . ,N} and letting s̄k = ∑Ni=1 ŝ

k
i ,

s̄ = [s̄1, . . . , s̄p] it follows that (x̂, s̄) is a feasible point
for (6). Now, let (x̃, s̃) be a feasible point for (6). Let
v = [g1

1(x̃1), . . . , gki (x̃N), . . . ; gpN(x̃N)] ∈ RNp and s̆ =
[ s̃1
N
, . . . , s̃

1

N
, . . . , s̃

p

N
, . . . , s̃

p

N
] ∈ RNp. Note that 1TNp(v+s̆) = 0.

This implies that v + s̆ belongs to the range space of the
Laplacian L of the communication graph and hence there
exists ỹ such that −Lỹ = v + s̆. By a similar argument, by
letting w = [h1

1(x̃1), . . . , hli(x̃N), . . . ; gpN(x̃N)] there exists
z̃ such that −Lz̃ = w. Now it follows that (x̃, ỹ, s̆, z̃) is
feasible for (6), hence proving that the feasible sets of (6)
and (7) are the same.

Proposition 4.1 implies that (5) has a unique optimizer
in the variables x. However, since the objective function
in (5) is not strongly convex in y and z, the optimizer in
the variables y and z might not be unique. Hence, for the
results that follow, we take ε > 0 and define f εi (xi, yi, zi) =
fi(xi) + ε

2
∥yi∥2 + ε

2
∥zi∥2, f ε(x, y, z) = ∑Ni=1 f

ε
i (xi, yi, zi).

Consider the following regularized version of (5),

min
x∈RNn,y∈RNp,z∈RNq

N

∑
i=1

f εi (xi, yi, zi), (8)

s.t. gki (xi) + ∑
j∈Ni

(yki − ykj ) ≤ 0,

hli(xi) + ∑
j∈Ni

(zki − zkj ) = 0,

i ∈ {1, . . . ,N}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q}.

Let (x∗,ε, y∗,ε, z∗,ε) ∈ RNn × RNp × RNq be the optimizer
of (8), which is unique because the objective function is
strongly convex and the feasible set is convex. Next we
establish a sensitivity result for the regularized optimization
problem (8).

Lemma 4.2: (Sensitivity of regularized problem): Given
δ > 0, there exists ε̄ > 0 so that if ε < ε̄, then ∥x∗,ε − x∗∥ < δ.

Proof: Let (x∗, y∗, z∗) be an optimizer of (5) with
m = f(x∗, y∗, z∗). Since x∗ is unique, there exists β > 0
such that f(x) = f0(x, y, z) ≥m+β, for all x ∈ F , y ∈ RNp,
z ∈ RNq whenever ∥x − x∗∥ = δ. Hence, for any ε > 0 it
follows that

f ε(x, y, z) ≥ f0(x, y, z) ≥m + β,

for all x ∈ F , y ∈ RNp, z ∈ RNq whenever ∥x − x∗∥ = δ. On
the other hand, since f is continuous with respect to ε, for
any δ > 0 we can find ε̄ such that

f ε(x∗, y∗, z∗) ≤m + β
2

∀ε < ε̄.

Hence, by taking ε < ε̄ we can ensure that the set

{(x, y, z) ∈ F ×RNp ×RNq ∶ ∥x − x∗∥ ≤ δ}

contains the local minimizer of f ε for any ε < ε̄. Thus,
∥x∗,ε − x∗∥ ≤ δ for all ε < ε̄, as stated.

Given Lemma 4.2, in what follows we focus on solving (8)
and assume that ε is taken sufficiently small to guarantee a
desired maximum distance between x∗,ε and x∗.

B. Cascade of saddle-point dynamics and safe gradient flow

In this section, we build on the reformulation presented
above to design our proposed algorithmic solution. Note
that, if we had knowledge of the optimizers y∗,ε, z∗,ε of
Problem (8), we could break the optimization into N , one
per agent i ∈ {1, . . . ,N}, decoupled optimization problems
as follows,

min
xi∈Rn

f εi (xi), (9)

s.t. gki (xi) + ∑
j∈Ni

((yki )∗,ε − (ykj )∗,ε) ≤ 0,

hli(xi) + ∑
j∈Ni

((zki )∗,ε − (zkj )∗,ε) = 0,

k ∈ {1, . . . , p}, l ∈ {1, . . . , q}.

In turn, each of these problems could be solved in an anytime
fashion by having each agent execute the corresponding safe
gradient flow, cf. Proposition 2.1. However, since y∗,ε and
z∗,ε are not readily available, agents need to interact with
their neighbors to compute them. Since this would require
an iterative algorithm, this means agents will face evolving y
and z in the corresponding formulation of (9), which raises
the additional challenge of ensuring the anytime nature of the
safe gradient flow is preserved. We tackle these challenges
next.

To generate the update law for y and z, we propose to use
the projected saddle-point dynamics of (8). By [19, Theorem
5.1], these are guaranteed to converge to its optimizers.
Simultaneously, we implement the safe gradient flow of (9)
with the current values of y and z, i.e., (with the notation
yNi = yi ∪ {yj}j∈Ni , zNi = zi ∪ {zj}j∈Ni ):

Siα(xi, yNi , zNi) =

arg min
ξi∈Rn

1

2
∥ξi +∇fi(xi)∥2

, (10)

s.t. ∇gki (xi)ξi ≤ −α(gki (xi) + ∑
j∈Ni

(yki − ykj )),

∇hli(xi)ξi = −α(hli(xi) + ∑
j∈Ni

(zli − zlj)),

k ∈ {1, . . . , p}, l ∈ {1, . . . , q},

for all i ∈ {1, . . . ,N}. We denote Sα(x, y, z) =
[S1
α(x1, yN1 , zN1), . . . , SNα (xN , yNN , zNN )]. To add more



flexibility to our design, we add a timescale separation
parameter τ > 0 that allows the projected saddle-point
dynamics to be run at a faster rate relative to the safe gradient
flow. This leads to the cascaded dynamical system:

τ v̇i = −∇fi(vi) −
p

∑
k=1

λki∇gki (vi), (11a)

τ ẏki = −εyki − ∑
j∈Ni

(λki − λkj ), (11b)

τ żli = −εzli − ∑
j∈Ni

(µli − µlj), (11c)

τ λ̇ki = [gki (vi) + ∑
j∈Ni

(yki − ykj )]+λki , (11d)

τ µ̇li = hli(vi) + ∑
j∈Ni

(zki − zkj ), (11e)

ẋi = Siα(xi, yNi , zNi), (11f)

for i ∈ {1, . . . ,N}, k ∈ {1, . . . , p} and l ∈ {1, . . . , q},
where vi are virtual variables that play the role of xi in
the projected saddle-point dynamics. Since (11) results from
the cascaded interconnection of saddle-point dynamics and
the safe gradient flow, we refer to it as SP-SGF.

Remark 4.3: (Scalability and distributed character of SP-
SGF): In algorithm (11), each agent has a state variable
of dimension 2n + 2p + 2q. To compute the evolution of
these state variables, each agent only requires information
provided by its neighbors in G. Therefore, the algorithm is
distributed. In addition, since the memory needed by each
agent to run (11) remains constant as the network size N
increases, the algorithm is also scalable. ●

Remark 4.4: (Algorithm implementation): Note that the
execution of SP-SGF requires solving the optimization prob-
lem (10), for each i ∈ {1, . . . ,N}, which is a quadratic
program and hence can be solved efficiently. In fact, if the
number of constraints is low, closed-form expressions for its
solution [25, Theorem 1] are available. ●

In what follows, we assume that for all i ∈ {1, . . . ,N},
the set of initial conditions for vi, yi, zi, λi and µi in (11)
lie in compact sets Vi, Yi, Zi, Λi and Mi respectively.
This means that the initial conditions v, y, z, λ, µ lie in
compact sets V ∶= ⨉Ni=1 Vi, Y ∶= ⨉Ni=1Yi, Z ∶= ⨉Ni=1Zi,
Λ = ⨉Ni=1 Λi, M = ⨉Ni=1Mi. Since the projected saddle-
point dynamics (11a)-(11e) are convergent by [19, Theorem
5.1], there exist compact sets V̄ , Ȳ , Z̄ , Λ̄, M̄ such that the
trajectories of v, y, z, λ, µ under (11) stay in V̄ , Ȳ , Z̄ , Λ̄
and M̄ respectively for all positive times. In what follows,
we make the following assumption regarding the feasibility
of (10).

Assumption 2: (Feasibility of Sα): For all
i ∈ {1, . . . ,N}, (10) is feasible for all (xi, yNi , zNi) ∈
ΠxiF ×ΠyNi

Ȳ ×ΠzNi
Z̄ .

The following result gives a sufficient condition under
which Assumption 2 holds.

Lemma 4.5: (Sufficient condition for feasibility of Sα):
Suppose that the vectors {∇gki (xi)}

p
k=1 ∪ {∇hli(xi)}

q
l=1 are

linearly independent for all xi ∈ ΠxiF . Then, for all i ∈
{1, . . . ,N}, (10) is feasible for all (xi, yNi , zNi) ∈ ΠxiF ×

ΠyNi
Ȳ ×ΠzNi

Z̄ .
Proof: By considering the inequality constraints in (10)

as equality constraints, and since p + q ≤ n necessarily, (10)
consists of a linear system of equations with at least as many
unknowns as equations. If the number of equations is strictly
less than the number of unknowns (i.e., p + q < n), (10) is
feasible. If the number of equations is equal to the number
of unknowns, (i.e., p + q = n), (10) is feasible because
{∇gki (xi)}

p
k=1 ∪ {∇hli(xi)}

q
l=1 are linearly independent for

all xi ∈ ΠxiF .
The next result establishes some feasibility and regularity

properties of Sα. Its proof follows an argument analogous to
the proof of [11, Proposition 5.3].

Proposition 4.6: (Well-posedness and regularity of SP-
SGF): Under Assumption 2, the following statements hold:

● There exists an open neighborhood U containing V̄ ×
Ȳ × Z̄ × Λ̄×M̄ ×F such that (11) is well-defined on U ;

● The dynamical system (11) is locally Lipschitz on U ;
● The Lagrange multipliers of (10) are unique and locally

Lipschitz as a function of x, y and z on U .

V. INVARIANCE AND CONVERGENCE ANALYSIS

Having established the distributed character of the algo-
rithm (11), here we show the forward invariance of the
feasible set and the asymptotic convergence to the optimizer.

We start by introducing some useful notation. For
i ∈ {1, . . . ,N}, k ∈ {1, . . . , p} and l ∈ {1, . . . , q},
we let ψyki (t;p0), ψzlj(t;p0), ψxi(t;p0) be the
solution of (11b), (11c), (11f) respectively for
initial conditions p0 = (v0, y0, z0, λ0, µ0, x0) ∈ P ∶=
V × Y × Z × Λ × M × F . We also let ψy(t;p0) =
[ψy11(t;p0), . . . , ψyp1 (t;p0), . . . , ψy1

N
(t;p0), . . . , ψyp

N
(t;p0)],

and define ψz(t;p0) and ψx(t;p0) analogously. The next
result establishes the anytime nature of SP-SGF.

Lemma 5.1: (Anytime property): Suppose that x0 ∈ F and
Assumption 2 holds. Then, the trajectories of (11) satisfy
ψx(t;p0) ∈ F for all t ≥ 0.

Proof: Since Assumption 2 holds, the dynamics (11)
are well-defined on a neighborhood U , cf. Proposition 4.6.
If, at some t̄, ∑Ni=1 g

k
i (ψxi(t̄;p0)) = 0 for k ∈ {1, . . . , p}, then

because of the constraints in (10),

d

dt

N

∑
i=1

gki (ψxi(t;p0))∣t=t̄

=
N

∑
i=1

∇gki (ψxi(t̄;p0))Siα(ψxi(t̄;p0), ψyNi (t̄;p0), ψzNi (t̄;p0))

≤−α
N

∑
i=1

(gki (ψxi(t̄;p0)) + ∑
j∈Ni

(ψyki (t̄;p0) − ψykj (t̄;p0))) = 0.

Hence by Brezis’ Theorem [26], it follows that
∑Ni=1 g

k
i (ψxi(t;p0)) ≤ 0 for all t ≥ 0, p0 ∈ P

and k ∈ {1, . . . , p}. By a similar argument,
d
dt ∑

N
i=1 h

l
i(ψxi(t;p0))∣t=t̄ = 0. Hence, it follows that

∑Ni=1 h
l
i(ψxi(t;p0)) = 0 for all t ≥ 0, p0 ∈ P and

l ∈ {1, . . . , q}.



Next, we turn to the study of the convergence properties
of (11). The next result establishes a connection between the
equilibrium points of Sα and the optimizers of (8).

Proposition 5.2: (Relationship between equilibria and op-
timizers): Let x ∈ F . Then, Sα(x, y∗,ε, z∗,ε) = 0 if and only
if x = x∗,ε.

Proof: Note that Siα(xi, y∗,εNi , z
∗,ε
Ni

) is the safe gradient
flow associated to the optimization problem (9), which by
Proposition 4.1 has x∗,εi as the unique optimizer. The result
then follows from Proposition 2.1(v).

Next we show that the trajectories of x in (11) converge
to the optimizer of (8).

Theorem 5.3: (Convergence to optimizer): Suppose As-
sumption 2 holds. For any δ > 0 and compact set Ω
containing {x ∈ F ∶ ∥x − x∗,ε∥ ≤ δ}, there exists τδ,Ω > 0
and Tδ,Ω such that if τ < τδ,Ω, then under the dynamics (11):

∥ψx(t;p0) − x∗,ε∥ < δ,

for all t ≥ Tδ,Ω and p0 = (v0, y0, z0, λ0, µ0, x0) ∈ P .
Moreover, if F is bounded, then for any τ > 0,

lim
t→∞

∥ψx(t;p0) − x∗,ε∥ = 0.

for all p0 ∈ P .
Proof: Since the dynamics in (11) are not differentiable,

the standard version of Tikhonov’s theorem for singular
perturbations [27, Theorem 11.2] is not applicable. Instead
we use [28, Corollary 3.4], which gives a Tikhonov-type
singular perturbation statement for differential inclusions. In
the case of non-smooth ODEs for which the fast dynamics do
not depend on the slow variable, like (11), we need to check
the following assumptions. First, that the dynamics (11) are
Lipschitz. Note that local Lipschitzness of (11) follows from
Proposition 4.6, the Lipschitzness of the gradients of f and g
and the Lipschitzness of the max operator. Moreover, since
V̄ , Ȳ , Z̄ , Λ̄, M̄ and Ω are compact, we can redefine the
dynamics (11) outside of V̄×Ȳ×Z̄×Λ̄×M̄×Ω so that they are
globally Lipschitz while still keeping the same dynamics for
initial conditions in V×Y×Z×Λ×M ×Ω. Second, existence
and uniqueness of the equilibrium of the fast dynamics. This
follows from the fact that (8) has a strongly convex objective
function and convex constraints, which implies that it has
a unique KKT point. Third, Lipschitzness and asymptotic
stability of the reduced-order model

˙̄x = Sα(x̄, y∗,ε, z∗,ε) (12)

Lipschitzness follows from Proposition 4.6 and asymptotic
stability follows from [11, Theorem 5.6] and the fact that Ω
is compact. Fourth, asymptotic stability of the fast dynamics.
This follows from [19, Theorem 5.1]. Finally, note that x∗,ε

is the only equilibrium point of (12) and hence the result
follows from [28, Corollary 3.4].

Now suppose that F is compact. Pick an arbitrary θ > 0.
Since f is continuous and x∗,ε is the unique minimizer of (8),
there exist constants aθ > 0, bθ > 0 such that the sets

Aθ = {x ∈ F ∶ f(x) − f(x∗,ε) ≤ aθ}
Bθ = {x ∈ F ∶ ∥x − x∗,ε∥ ≤ bθ}

Cθ = {x ∈ F ∶ ∥x − x∗,ε∥ ≤ θ}

satisfy Bθ ⊆ Aθ ⊆ Cθ. Next, we show that there ex-
ists Tθ > 0 such that ψx(t;p0) ∈ Cθ for t ≥ Tθ and
all p0 ∈ P (i.e., Cθ is asymptotically stable relative to
F). Since θ is arbitrary, this completes the proof. Let
({φki (xi, yNi , zNi)}

p
k=1,{χli(xi, yNi , zNi)}

q
l=1) be the La-

grange multipliers associated to the optimization problem
defining Siα(xi, yNi , zNi), which are unique and locally
Lipschitz by Proposition 4.6. Then, by following an argument
analogous to the one in the proof of [11, Lemma 5.8]:

d

dt
(f(x) − f(x∗,ε)) ≤ − ∥Sα(x, y, z)∥2 (13)

+
N

∑
i=1

p

∑
k=1

φki (xi, yNi , zNi)α(gki (xi) + ∑
j∈Ni

(yki − ykj ))

+
N

∑
i=1

q

∑
l=1

χli(xi, yNi , zNi)α(hli(xi) + ∑
j∈Ni

(zki − zkj )).

Since (11a)-(11e) are the projected saddle-point dynamics
of (8) and the objective function of (8) is strongly convex,
by [19, Theorem 5.1], the variables v, y, z, λ, µ converge
to the KKT point of (8) for all τ > 0. Moreover, since
Sα(x, y∗,ε, z∗,ε) = 0 if and only if x = x∗,ε by Propo-
sition 5.2, Sα is continuous by Proposition 4.6 and P is
compact, for any fixed τ > 0, there exist σθ,τ and T1,θ,τ

such that for all t ≥ T1,θ,τ and p0 ∈ P , ∥ψx(t;p0) − x∗,ε∥ > bθ
implies ∥Sα(ψx(t;p0), ψy(t;p0), ψz(t;p0))∥ > σθ,τ .

Now, define

ĝki (t, p0) = gki (ψxi(t;p0)) + ∑
j∈Ni

(ψyki (t;p0) − ψykj (t;p0)),

ĥli(t, p0) = hli(ψxi(t;p0)) + ∑
j∈Ni

(ψzli(t;p0) − ψzlj(t;p0)),

φ̂ki (t, p0) = φki (ψxi(t;p0), ψyNi (t;p0), ψzNi (t;p0)),
χ̂li(t, p0) = χli(ψxi(t;p0), ψyNi (t;p0), ψzNi (t;p0)),

and let us show that there exists a time T2,θ,τ > 0 such that

α
N

∑
i=1

p

∑
k=1

φ̂ki (t, p0)ĝki (t, p0) + α
N

∑
i=1

q

∑
l=1

χ̂li(t, p0)ĥli(t, p0) <
σθ,τ

2
,

(14)

for all t ≥ T2,θ and p0 ∈ P . First define

cφ ∶= max
(x,y,z)∈F×Ȳ×Z̄
i∈{1,...,N}
k∈{1,...,p}

∣φki (xi, yNi , zNi)∣,

cχ ∶= max
(x,y,z)∈F×Ȳ×Z̄
i∈{1,...,N}
l∈{1,...,q}

∣χli(xi, yNi , zNi)∣.

Note that such cφ, cχ exist because F , Ȳ and Z̄ are compact.
Now note that
d

dt
(ĝki (t, p0)) ≤ −αĝki (t, p0) + ∑

j∈Ni

(ψ̇yki (t;p0) − ψ̇ykj (t)),

d

dt
(ĥli(t, p0)) ≤ −αĥli(t, p0) + ∑

j∈Ni

(ψ̇zli(t;p0) − ψ̇zlj(t)).



Since the variables yki , z
k
i are convergent by [19, Theorem

5.1],

lim
t→∞

ψ̇yki (t;p0) = 0, ∀i ∈ {1, . . . ,N}, k ∈ {1, . . . , p},

lim
t→∞

ψ̇zli(t;p0) = 0, ∀i ∈ {1, . . . ,N}, l ∈ {1, . . . , q}.

for all p0 ∈ P . Hence, there exists a time T̂2,θ,τ > 0 such that

∑
j∈Ni

(ψ̇yki (t;p0) − ψ̇ykj (t)) ≤
σθ,τ

8αNpcφ
,

∑
j∈Ni

(ψ̇zli(t;p0) − ψ̇zlj(t)) ≤
σθ,τ

8αNpcχ

for all i ∈ {1, . . . ,N}, k ∈ {1, . . . , p}, l ∈ {1, . . . , q} and
t ≥ T̂2,θ,τ , p0 ∈ P . By the Comparison Lemma [27, Lemma
3.4], it holds that

ĝki (t, p0) ≤ ĝki (T̂2,θ,τ , p0)e−α(t−T̂2,θ,τ ) + σθ,τ

8Npcφ
,

ĥli(t, p0) ≤ ĥli(T̂2,θ,τ , p0)e−α(t−T̂2,θ,τ ) + σθ,τ

8Npcχ
.

Since F is compact, ψx(t;p0) ∈ F by Lemma 5.1,
ψy(t;p0) ∈ Ȳ and ψz(t;p0) ∈ Z̄ for all t ≥ 0, this implies that
there exists a time T2,θ,τ > 0 such that (14) holds for all t ≥
T2,θ,τ and p0 ∈ P . Now, let Tθ,τ = max{T1,θ,τ , T2,θ,τ}. Then,
it holds that for all t ≥ Tθ,τ , d

dt
(f(ψx(t;p0)) − f(x∗,ε)) < 0

if ∥ψx(t;p0) − x∗,ε∥ > bθ. Since Bθ ⊆ Aθ, this implies that
Aθ is asymptotically stable relative to F . Since Aθ ⊆ Cθ, it
follows that Cθ is asymptotically stable relative to F , hence
completing the proof. Note that this argument is valid for all
fixed τ > 0.

By Theorem 5.3, the trajectories of the x variable in SP-
SGF converge arbitrarily close to the optimizer x∗,ε provided
that the timescale parameter τ is small enough. Moreover,
if the feasible set F is bounded, asymptotic convergence
holds for any timescale. The combination of the scalable and
distributed character, cf. Remark 4.3, the anytime nature, cf.
Lemma 5.1, and the convergence properties, cf. Theorem 5.3
means that SP-SGF provides the algorithmic solution with
the properties stated in Section III.

Example 5.4: (Resource allocation): We illustrate the be-
havior of SP-SGF in a resource allocation example. Consider
13 agents whose communication graph is an undirected line
graph. Solving distributed optimization problems with this
particular topology is challenging due to its low connectivity.
Each agent’s state variable is xi = [xi,1, xi,2] ∈ R2, where
xi,1 (resp. xi,2) corresponds to the amount of resource 1
(resp. 2) allocated by agent i. Resource 1 is subject to an
equality constraint and resource 2 is subject to an inequality
constraint. Hence, the agents solve the optimization problem,

min
{xi}13i=1

13

∑
i=1

1

2
∥xi∥2

, (15)

s.t. h({xi}13
i=1) = 5 −

13

∑
i=1

pixi,1 = 0,

g({xi}13
i=1) = −3 +

13

∑
i=1

e−xi,2 ≤ 0.

with p1 = 1, p2 = 3, p3 = 2, p4 = 1, p5 = 1, p6 = 1, p7 = 2,
p8 = 4, p9 = 1, p10 = 1, p11 = 0.5, p12 = 2, p13 = 1. Note that
the condition in Lemma 4.5 holds and hence Assumption 2
holds. This implies by Proposition 5.3 that (11) is well-
defined for (15). We use ε = 0.0001 and α = 1. Figure 1
illustrates the convergence of the x variables under SP-SGF.

Since the feasible set of (15) is unbounded, Proposition 5.3
states that convergence arbitrarily close to the optimizer can
be achieved by taking τ sufficiently small. Figure 2 illustrates
the convergence of the quantities ∑13

i=1 x
2
i,1 and ∑13

i=1 x
2
i,2 for

different values of τ and shows that this quantity converges
exactly to its optimal value for a wide range of values of τ ,
suggesting that the statement in Proposition 5.3 might be too
conservative.

Figure 3 compares the evolution of the constraints of (15)
under SP-SGF against two other algorithms: the projected
saddle point dynamics (3) (abbreviated SP), which is not dis-
tributed, and the projected saddle-point dynamics (abbrevi-
ated SP-CM) for its reformulation with constraint mismatch
variables as in (5), which is distributed. SP-SGF satisfies the
constraints at all times whereas SP and SP-CM do not. We
note that, in this case, SP-SGF requires running a dynamical
system with 104 scalar variables (8 for each agent), SP-CM
requires running a dynamical system of 78 scalar variables (6
for each agent) and SP requires running a dynamical system
with 28 scalar variables. ●

Fig. 1: Evolution of the variables x1,i (top) and x2,i (bottom) for i ∈
{1, . . . ,13} under SP-SGF for (15) with initial conditions x1 = [3,5],
x2 = [1,4], x3 = [−1,3], x4 = [−2,2], x5 = [3,1], x6 = [0,10], x7 =
[0,9], x8 = [0,8], x9 = [0,7], x10 = [0,6], x11 = [0,5], x12 = [−2,4],
x13 = [4,3], vi,1 = vi,2 = zi = yi = λi = µi = 0 for all i ∈ {1, . . . ,13}
and τ = 1.



Fig. 2: This plot shows the evolution of ∑13
i=1 x

2
i,1 and ∑13

i=1 x
2
i,2 under

SP-SGF with initial conditions as in Figure 1 for different values of τ .

Fig. 3: This plot shows the evolution of the constraints of (15) for SP-SGF
with the same initial conditions as in Figure 1, SP with the same primal
initial conditions as in Figure 1 and λ = µ = 0 and SP-CM with the same
initial conditions as in Figure 1 for xi, zi, yi, λi and µi for i ∈ {1, . . . ,13}.

VI. CONCLUSIONS

We have introduced a continuous-time dynamical system
that solves network optimization problems with separable
objective function and constraints in a distributed and any-
time fashion. We have achieved this by combining the
projected saddle-point dynamics and the safe gradient flow
in a cascaded system. We have argued the scalable nature of
the algorithm execution from the point of view of individual
agents and established practical convergence to the optimizer
when the feasible is unbounded, and exact convergence when
it is bounded. Future work will consider other network
optimization problems, refine the convergence guarantees
presented here and possibly design new distributed, anytime
algorithms, and investigate discretization schemes for the
continuous-time dynamics. We also plan to apply our coor-
dination algorithms in the implementation of optimization-
based controllers arising from safety certificates for multi-
agent systems.
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