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Abstract— This paper studies a model that captures epidemic
spreading in a population with heterogeneous testing capabil-
ities. The detection of the disease is faster in a subpopulation
because of access to better testing capabilities, whereas another
subpopulation relies on standard testing to confirm positive
cases once individual have manifested symptoms. This model is
a particular case of a recently proposed vectorized SIR model,
for which we characterize various invariance properties and
the stability properties of its set of equilibria. We leverage
these analytical results to design social distancing policies that
guarantee that the impact of the pandemic satisfies certain
specifications, namely, that the total capacity of the healthcare
system does not get overburdened and that the total number
of infections throughout the pandemic remains below a thresh-
old. Simulations illustrate the extent to which higher testing
capabilities allow for more lenient social distancing policies.

I. INTRODUCTION

The spread of COVID-19 across the world and its disrup-
tive implications on the health and well-being of millions of
humans has sparked interest in having reliable and accurate
models for the spread of a disease in a population. Possessing
these models is critical for government authorities, which
since the beginning of the pandemic have tried to implement
non-pharmaceutical interventions (NPIs) that mitigate the
medical, social and economic impacts of the pandemic. An
alternative to NPIs to contain the spread is the use of asymp-
tomatic testing mechanisms. In certain situations, COVID-19
leads to pneumonia and severe respiratory complications, in
which case patients are sent to Intensive Care Units (ICUs).
It is thus critical to keep the number of infections under
a certain threshold, that depends on the ICU beds that the
population has at their disposal. In this paper we study how a
COVID-19-like disease spreads in a population with different
testing mechanisms and design the optimal level of NPIs that
guarantee that certain safety constraints.

Literature Review: Models for the spread of an epidemic
have a long history starting as early as the 18th century [1].
Recently, since the beginning of the COVID-19 pandemic
several models tailored to the spread of this disease have been
proposed. By using a model that recognizes the fact that only
a portion of the infected population is actually symptomatic,
[2] studies the early spread of COVID-19 in Italy. The work
in [3] introduces a novel model with susceptible (S), infected
(I), diagnosed (D), ailing (A), recognized (R), threatened
(T), healed (H) and extinct (E) individuals that also takes
into account the important feature of COVID-19 that a
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part of the infections come from asymptomatic but infected
individuals. The extent to which COVID-19 can be controlled
by the authorities by using data from rapid daily tests has
also been studied [4]. The model proposed in [6] is the
one most closely related to our work. It generalizes most
of the proposed models for COVID-19-like infections, and
proposes a novel characterization of the reproduction number
as the gain matrix of an appropriately defined linear system.
However, the set of equilibria of the newly proposed model is
characterized, but their stability properties are not studied. A
critical idea that has been explored in the context of COVID-
19 is flattening the curve, i.e., implementing control policies
that guarantee that the fraction of infected/hospitalized re-
mains below a predefined threshold. This is formulated as
an optimal control problem in [7], and [8] employs an MPC
approach. A recent line of work [9] applies safety-critical
control ideas to tackle this issue. Our work is also related to
the problem of resource allocation in the context of epidemic
spreading [10]. A well-established approach to tackle this
problem is using geometric programming [11].

Statement of Contributions: We study1 dynamical and
control properties of a compartmental model that captures
the evolution of a disease in interacting subpopulations with
different testing capabilities. This model is a particular case
of a recently proposed model that generalizes a large class of
SIR-like compartmental models. Our first contribution is the
derivation of a set of conserved quantities for the general
model. Moreover, we show how they can be used to give
a novel proof of the transcendental equation satisfied by
the asymptotic fraction of the different susceptible compart-
ments. Our second contribution states the relationship be-
tween the reproductive number of the model and the stability
properties of both the set of equilibria and each of the equi-

1Throughout the paper, we denote by R and R≥0 the set of real and non-
negative real numbers, and by ‖·‖ the Euclidean norm in Rn. We use the
notation 0n and 1n to represent the n-dimensional zero and one vectors,
respectively. A matrix A ∈ Rn+m is positive, denoted A > 0, (non-
negative, denoted A ≥ 0) if all its entries are positive (non-negative). By
extension A < B (A ≤ B) means that B−A is positive (non-negative). The
spectral radius ρ(A) of a square matrix A is the largest absolute value of its
eigenvalues. We denote by λmax(A) the largest real part of the eigenvalues
of A. A matrix of the form A = sI − B, with B ≥ 0 and I the identity
matrix, has the Z sign pattern. If in addition, s ≥ ρ(B), then A is an
M -matrix. A matrix is Metzler if all the off-diagonal components are non-
negative. Given a vector x ∈ Rn, diag(x) denotes the diagonal matrix with
x in its diagonal. A continuous function α : [0, a) → [0,∞), a > 0, is
of class K if it is strictly increasing and α(0) = 0. For a = ∞, we refer
to it as an extended class K function. A set U is positively invariant under
the dynamical system ẋ = f(x) if any trajectory with initial condition in
U remains in U for all time. We use Lfh to denote the Lie derivative of
the function h along the vector field f . A dynamical system is positive if
the set Rn

≥0 is positively invariant. A linear system ẋ = Ax is positive if
and only if A is a Metzler matrix.



librium points in the set for the general model. Our last con-
tribution is the design of a control policy for our model that
keeps the maximum fraction of infections below a predefined
threshold and the total number of infections throughout the
pandemic below another threshold. We achieve the former by
using theory on high order control barrier functions and the
latter by leveraging the transcendental equation satisfied by
the asymptotic fraction of susceptibles. We integrate these
two constraints in an optimization problem that is solved
online. Simulations with real data from two zip codes in
San Diego County illustrate the performance of the proposed
approach. For space reasons, all proofs are omitted and will
appear elsewhere.

II. PRELIMINARIES

Here we present basic concepts on compartmental epi-
demiological models and high-order control barrier func-
tions.

A. Compartmental Models in Epidemiology
Compartmental models are a common framework to model

the spread of an infection in a population [12]. The popu-
lation is divided in groups or compartments and individuals
transition between them at different rates, depending on the
specific model. One of the most commonly used compart-
mental models is the Susceptible-Infected-Recovered (SIR)
model, in which susceptible individuals get infected at some
constant rate and infected individuals recover at some other
constant rate. The addition of an Exposed (E) compartment
to model the incubation period in which an individual is
infected but asymptomatic yields the also commonly used
SEIR model. Multiple variations of these basic models
have been proposed, including networked versions [13] and
models tailored to the characteristics of COVID-19 [3]. The
recently introduced model in [6] generalizes all of the above
by proposing a vectorized version of the SIR model which
takes the following form,

Ṡ = − diag(S)TI, (1a)

İ = AI +B diag(S)TI, (1b)

Ṙ = CÃI. (1c)

We will henceforth refer to this model as the vectorized SIR
model. Here S ∈ Rm≥0, I ∈ Rn≥0, R ∈ Rp≥0 represent the frac-
tion of individuals of the total population in the susceptible,
infected or exposed, and recovered or removed compartments
respectively. The matrix T ∈ Rm×n encodes the rate at
which the infected or exposed compartments infect the
susceptibles and B ∈ Rn×m details how the newly infected
or exposed get distributed in the different compartments. The
matrix A ∈ Rn×n captures the rate of transition between
the different infected or exposed compartments, and from
those to the recovered or removed. Finally, C ∈ Rp×n and
Ã ∈ Rn×n encode how the newly recovered or removed get
distributed across different compartments (the reason why the
term CÃ is expressed as the product of two different matrices
is so that one can impose simple consistency conditions on
C and Ã separately). The conditions that need to be satisfied
by those matrices are:

(i) A is stable,
(ii) A is Metzler and Ã, B,C, T ≥ 0,

(iii) each of the columns of B and C sum to 1,
(iv) the columns of A+ Ã sum to 0,
(v) all rows of T have at least one strictly positive element.

Intuitively, (i) ensures that the number of infected or exposed
individuals converges to zero, (ii) ensures that the state vari-
ables remain non-negative and, therefore, physically mean-
ingful, (iii) ensures that the total population is conserved and
(iv) ensures that the positive orthant is positively invariant.
Finally, (v) guarantees that the fraction of individuals in the
susceptible compartments is strictly decreasing as long as
there are exposed and infected individuals.

The reproduction number of an epidemic model is the
average number of secondary infections generated by an
infected individual. It is often useful to have an explicit
expression for it, as it is related to the ability of a disease to
persist in a population. According to [6, Theorem 3], the
reproductive number R0 for (1) can be expressed as the
spectral radius of the matrix −TA−1B diag(S0), where S0

is the initial fraction of susceptibles.

B. High-Order Control Barrier Functions

In this section we review the concept of High-Order Con-
trol Barrier Functions (HOCBFs) [14]. Consider a control-
affine dynamical system

ẋ = f(x) + g(x)u, (2)

where x ∈ Rn and u ∈ U ⊂ Rq , with f : Rn → Rn and
g : Rn → Rn×q locally Lipschitz. Let b : Rn → R be a
function which defines a safe set of the form

C := {x ∈ Rn : b(x) ≥ 0}.

We seek to ensure that all system trajectories remain in
C along their evolution, i.e., that C is positively invariant.
Let m ∈ Z>0 be the relative degree of b (i.e., b has to
be differentiated m times along the dynamics (2) before
the control u explicitly appears in the expressions). This
means that, in order to ensure that the value of b remains
positive at all times (i.e., C is positively invariant), we need
to reason with its higher-order derivatives. To do so, given
differentiable class K functions l1, l2, . . . , lm−1, define a
series of functions φ0, . . . , φm−1 : Rn → R as follows:
φ0 = b and

φi(x) = Lfφi−1(x) + li(φi−1(x)), i ∈ {1, . . . ,m− 1}.

We further define sets C1, . . . , Cm as follows: C1 = C and

Ci = {x ∈ Rn : φi−1(x) ≥ 0}, i ∈ {2, . . . ,m}.

The function b is a high-order control barrier function
(HOCBF) if one can find differentiable, class K functions
l1, l2, . . . , lm such that, for all x ∈ C ∩ C2 ∩ . . . ∩ Cm, there
exists u ∈ U satisfying

Lfφm−1(x) + Lgφm−1(x)u+ lm(φm−1(x)) ≥ 0. (3)

If m = 1, this definition corresponds to the notion of Control
Barrier Function (CBF). According to [14, Theorem 5], any



Lipschitz continuous controller that satisfies (3) at each x ∈
C ∩C2 ∩ . . .∩Cm renders the set C ∩C2 ∩ . . .∩Cm positively
invariant for system (2).

III. PROBLEM STATEMENT

Given two subpopulations of individuals forming a larger
community, consider the scenario where the detection of the
disease is faster in one subpopulation because of access to
better testing capabilities (e.g., wastewater detection plants
installed in large residential buildings, regular asymptomatic
scheduled tests, robust contact tracing protocols), whereas
the other subpopulation relies on standard testing to confirm
positive cases once individual have manifested symptoms.
Susceptible individuals might get infected by being in contact
with individuals who either are aware of having the disease
or have been exposed to the disease but are still unaware
of having it. Once infected, an individual enters an exposed
state in which it is infected and infectious but is unaware
of it. After some time, the individual becomes aware of
being infected, either because it becomes symptomatic or
tests positive. If an individual belongs to the subpopulation
with higher testing capabilities, it becomes aware of being
infected in a shorter time period than individuals belonging
to the subpopulation with lower testing capabilities, and it
can therefore implement self-isolation and contact tracing
protocols earlier to help reduce the spread of the disease.
Individuals recover from the disease at the same rate from
both subpopulations and never become susceptible again.

Under this scenario, we are interested in studying to what
extent the availability of better testing capabilities and the
relative size of the population that has access to them impacts
the spread of the disease. There is a tradeoff between the
cost of deploying such testing capabilities and the societal
and economic benefits that result from having them. One
could envision, for instance, that such capabilities allow for
the implementation of more lenient lockdown measures given
that positive cases can be detected more rapidly. We consider
the following description of the disease evolution:
ds

dt
= −βisi− βese1 − βese2,

de1

dt
= σβisi+ σβese1 + σβese2 − α1e1,

de2

dt
= (1− σ)βisi+ (1− σ)βese1 + (1− σ)βese2 − α2e2,

di

dt
= α1e1 + α2e2 − γi,

dr

dt
= γi. (4)

The variable s represents the fraction of individuals in the
susceptible population. The fraction of infected but unaware
(for simplicity, we henceforth refer to those as exposed) indi-
viduals in the subpopulation with higher (resp., lower) testing
capabilities is e2 (resp., e1). The fraction of individuals in
the population that are infected and aware (for simplicity,
we refer to those as infected) is i. Finally, r represents the
fraction that are recovered (or removed).

The parameters βi and βe are the infection rates with
which the infected aware and infected unaware, respectively,

infect the susceptible population. Given the setup described
above, βi < βe, i.e., unaware infected infect at a faster
rate than aware infected. These rates are determined by the
number of interactions between individuals and are therefore
tunable as a function of the social distancing policy in place.
The recovery rate is γ, with 1

γ representing the time it takes
for an individual to recover from the disease. The parameter
α1 (resp., α2) represents the inverse of the time individuals
spend being infected but unaware of it in the subpopulation
with lower (resp., higher) testing capabilities. Since testing
capabilities reduce the time spent being unaware of the
infection, α2 > α1. Finally, σ denotes the relative size
of the subpopulation with lower testing capabilities to the
total population. It remains constant along the trajectories
(because the infection rates for both subpopulations are the
same). The parameters are assumed to be strictly positive.
Note that (4) does not include the presence of disturbances,
that could arise from influx or outflux of people from other
communities or uncertainties in the model parameters. We
hence assume that the population is completely isolated from
its surroundings and the model parameters are known.

Interestingly, the model (4) is a particular case of (1). In
fact, this is verified by taking S = s ∈ R, I = [e1, e2, i]

T ∈
R3, R = r ∈ R and

A =

−α1 0 0
0 −α2 0
α1 α2 −γ

 , Ã =

0 0 0
0 0 0
0 0 γ

 , (5)

T =
[
βe βe βi

]
, B =

 σ
1− σ

0

 , C =
[
1 1 1

]
.

Our objective is to characterize the dynamical behavior of
the proposed model (4). We seek to leverage this knowledge
to determine to what extent the availability of better testing
capabilities allows to relax social distancing measures while
still guaranteeing that the evolution of the epidemics remains
within certain predefined bounds (e.g., to ensure hospitals
do not get overloaded). As an intermediate goal, and given
the observation that (4) is a particular case of (1), we
study the stability and invariance properties of the latter.
Building on this understanding, we then seek to synthesize
in (4) optimal rates βi and βe (as a proxy for optimal
social distancing policy) guaranteeing that the fraction of
infected never surpasses a predefined threshold and the total
fraction of individuals that have been infected throughout the
pandemic remains below another predefined threshold.

IV. INVARIANCE AND STABILITY ANALYSIS

In this section we study dynamical properties of (1) re-
garding invariance properties, the identification of conserved
quantities, and the stability of invariant sets and equilibria.

A. Invariance Properties and Conserved Quantities
We start by noting that the evolution of R in (1) is entirely

driven by the (S, I)-subsystem, so our analysis here focuses
on the latter. We start by noting, cf. [6], that the set of
equilibria of the (S, I) subsystem is

A = {(S, 0) ∈ Rn+m
≥0 : 0m ≤ S ≤ 1m}.



Since state variables represent fractions of individuals, they
have to remain lower bounded by zero and their sum has to
be upper bounded by one. The following result establishes
that this physically meaningful domain is positively invariant.

Lemma 4.1: (Positively invariant domain): The set Ω =
{(S, I) ∈ Rn+m

≥0 : 1TnS + 1TmI ≤ 1} is positively invariant.
The following result gives a set of conserved quantities

for (1) which help in understanding its dynamic behavior.
Proposition 4.2: (Conserved quantities): Let

F : Rn+m+p → Rm and G : Rn+m+p → Rp be
defined by

F (S, I,R) = logS + TA−1BS + TA−1I,

G(S, I,R) = −CÃA−1(BS + I) +R.

Then both F and G are constant along the trajectories of (1).
The next result relates the conserved function G with the

total population.
Lemma 4.3: (Total population is conserved): Along the

trajectories of (1), we have

1TmS + 1Tn I + 1TpR = 1TpG(S, I,R). (6)

In particular, the total population is conserved.
Remark 1: (Interpretation of G): In the case p = 1,

Lemma 4.3 implies that G is equal to the total population.
In network models, G defines the total population in each
of the nodes, and therefore its conservation implies that the
population in each node is conserved. •

B. Stability Properties of the Continuum of Equilibria
Here we study the stability properties of the set of

equilibria, considered as a whole and as individual points.
The next result characterizes the global asymptotic stability
properties of the set of equilibria, ruling out limit cycles, and
its dependence on the reproduction number R0.

Proposition 4.4: (Stability of the set of equilibria): Under
the (S,I)-subsystem dynamics of (1), the equilibrium set A

(i) is globally exponentially stable in the set

{(S, I) ∈ Ω : ρ(−TA−1B diag(S)) < 1},

(ii) is globally asymptotically stable and locally exponen-
tially stable in Ω.

Moreover, every solution of (1) converges to a point in A.
This result illustrates the relevance of the reproduction

numberR0, as it defines a threshold between global and local
exponential convergence to the equilibrium set. Similarly to
S, R is monotonic (because Ã and C are positive) and upper
bounded. Therefore it converges to a certain value R∞.

The function F in Proposition 4.2 can be used to give
an alternative proof to a result from [6, Theorem 4] on
the asymptotic ratio of susceptibles. The function G in
Proposition 4.2 can similarly be used to give a novel formula
for the asymptotic ratio of removed.

Theorem 4.5: (Transcendental equation for asymptotic ra-
tio of susceptibles [6, Theorem 4] and removed): The vector
∆ = S∞/S0 satisfies

− log(∆) + TA−1I0 + TA−1B diag(S0)(1m −∆) = 0.
(7)

The asymptotic fraction of recovered is given by R∞ =
limt→∞R(t) = R(0)− CÃA−1(B(S0 − S∞) + I0) .

We next turn our attention to characterizing the asymptotic
stability of the individual equilibrium points. The following
illustrates how the reproductive number also defines a thresh-
old for the stability of each point in A. Recall that [15] an
equilibrium point is semistable if it is Lyapunov stable and
there exists a neighborhood such that all trajectories start-
ing in the neighborhood converge to a (possibly different)
Lyapunov stable equilibrium point.

Proposition 4.6: (Stability properties of the individual
equilibrium points): An (Ŝ, 0) ∈ A equilibrium is semistable
if R0 < 1 and unstable if R0 > 1.

The interpretation of this result in terms of epidemic
spreading is as follows. When the initial ratio of infected I0
is small (e.g., at the beginning of the spread of the disease),
the initial condition is close to the equilibrium set A. In
this scenario, Proposition 4.6 states that if the reproduction
number is less than one, the epidemic remains localized
and most of the population is not infected, whereas if the
reproduction number is greater than one, the disease spreads
across a non-negligible part of the population.

V. SAFE CONTROL POLICY DESIGN

Here, we leverage the results of Section IV to introduce a
control policy that mitigates the impact of the epidemic. For
ease of interpretability, we focus on the model (4), albeit the
algorithm can be generalized to the more general model (1).
We assume a social planner can determine mobility restric-
tions which in turn affect the values of the infection rates
βe and βi. We assume the impact of these restrictions on
βe and βi is proportional, i.e., βe = κβi, for some κ > 0.
Hence, effectively there is only one control variable, which
we assume is βe. Moreover we assume βe is upper and lower
bounded by β̄e > 0 and

¯
βe > 0 respectively.

A. Safety Constraints

Our first goal is to keep the fraction of infected below
a predefined threshold ith at all times. This ensures that the
capacity of the healthcare system does not get overburdened.
To tackle this safety constraint, we take a CBF approach as
in [9] and define the candidate control barrier function b :
R4 → R as b(s, e1, e2, i) = ith − i. Note that, when viewed
as the control, βe has relative degree 2 with respect to b.
The following result identifies conditions on the parameters
to make sure this function is a HOCBF.

Lemma 5.1: (Sufficient conditions for a HOCBF to exist):
If

¯
βe ≥ 0, α2 > α1 and

¯
βe ≤

α1γith
(1 + κ)(α1σ + α2(1− σ))

, (8)

then b is a HOCBF for (4).
The condition α2 > α1 follows from the fact that one

of the subpopulations has higher testing capabilities, cf.
Section III. Regarding the condition (8), note that smaller
incubation (1/α1) and recovery (1/γ) periods, as well as a
higher threshold for infected (ith) yield a larger bound on

¯
βe,

meaning that more lenient social distancing measures are to



be expected. By the discussion in Section II-B with m = 2,
Lemma 5.1 implies that the set defined by C ∩ C2, with

C = {(s, e1, e2, i) ∈ Ω : i ≤ ith},
C2 = {(s, e1, e2, i) ∈ Ω : γith ≥ α1e1 + α2e2},

is positively invariant if we use a Lipschitz continuous
controller βe satisfying y(ith, βe, s, e1, e2, i) ≥ 0 along all
points of a trajectory.

Our second goal is to keep the total number of infections
throughout the pandemic below certain desired level. This
is equivalent to requiring that s∞ remains above a certain
threshold sth. Using a control barrier function to tackle this
constraint could be problematic since the decreasing nature
of s makes the resulting inequality potentially infeasible for
all values of βe. Instead, we leverage (7) to identify the
constraint z(sth, βe, s, e1, e2, i) ≥ 0 on βe, where

z(sth, βe, s, e1, e2, i) = log(s)−R0(βe)s− (
κβe
γ

+
βe
α1

)e1

− (
κβe
γ

+
βe
α2

)e2 −
κβe
γ
i+ log(sth)−R0(βe)sth.

In this expression, R0(βe) = κβe

γ + σ βe

α1
+ (1− σ) βe

α2
is the

reproduction number for (4).

B. Minimizing Social Costs while Guaranteeing Safety
In this section, we incorporate the two safety constraints

discussed in Section V-A in an optimization problem that
minimizes the economic and societal costs. In practice, it is
not possible to continuously monitor the state and therefore
ensure that those constraints are satisfied for all times.
Instead, we assume we have access periodic access to the
fraction of susceptibles, exposed and infected. Hence, we
solve the optimization problem periodically and propagate
the dynamics with the corresponding solution. Let T0 be
a pre-specified initial intervention time and δ > 0 the
period used to update the social distancing measures. Define
tj = T0+jδ, j ∈ {0, . . . , N} as the intervention times where
the social distancing measures can be updated. At each of
these times, consider the linear program

max
βe∈[

¯
βeβ̄e]

βe

s.t. y(ith, βe, sj , e1,j , e2,j , ij) ≥ 0,

z(sth, βe, sj , e1,j , e2,j , ij) ≥ 0, (9)

where sj , e1,j , e2,j , ij are the values of s, e1, e2, i at time tj ,
respectively. Algorithm 1 formalizes the iterative procedure
to update the social distancing measures.

The following result gives a sufficient condition on the
parameters of the model so that the optimization problem
remains feasible (and hence Algorithm 1 can be executed)
and quantifies the safety error induced by solving the prob-
lem periodically instead of continuously.

Proposition 5.2: (Feasibility and maximum unsafety
bound): Let

¯
sth and s̄th be defined by the transcendental

equations z(
¯
sth, β̄e, s0, e1,0, e2,0, i0) = 0 and

z(s̄th,
¯
βe, s0, e1,0, e2,0, i0) = 0. Under the conditions

in Lemma 5.1, suppose that
¯
sth ≤ sth ≤ s̄th. Then,

Algorithm 1: Periodic Updates of Social Distancing
Initial conditions: {s0, e1,0, e2,0, i0} ∈ C ∩ C2;
Parameters: T0, δ, N , γ, α1, α2, σ, κ,

¯
βe, β̄e;

for j ∈ [1, . . . , N ] do
Solve (9) to obtain optimal β∗e,j ;
Reset βe := β∗e,j , βi := κβ∗e,j ;
Run dynamics (1) for [tj−1, tj ];
j ← j + 1;

end

(i) At every iteration of Algorithm 1, (9) is feasible;
(ii) The inequalities s(t) ≥ sth, i(t) ≤ ith + Kδ are

satisfied for all t ∈ [0, (N + 1)δ), where

K =
1

α1γ

(
α2(α2 − α1)Le2 + β̄eL(α1σ + α2(1− σ))

)
,

L = κLi + Le1 + Le2 ,

and Le1 , Le2 and Li are Lipschitz constants for e1, e2

and i, respectively.
Proposition 5.2(ii) guarantees that if the optimization

problem is solved frequently enough, the safety error is
kept arbitrarily small. It also ensures that the fraction of
infected can be kept below i∗th by taking ith = i∗th − Kδ
in Algorithm 1.

VI. SIMULATIONS

In this section we illustrate the performance of the pro-
posed Algorithm 1. We use (4) to model the evolution of
the pandemic at the University of California, San Diego
(UCSD) and its surrounding areas. This is inspired by the
observation that, since the start of the 2020-2021 academic
year, UCSD implemented an extensive program for early
detection of the virus both via wastewater detection plants
and massive availability of rapid antigen tests. During the
same period of time, the zip codes surrounding UCSD did
not take such measures. To fit the model, we use real data of
the COVID-19 pandemic in two zip codes: 92093 (UCSD)
and 92037 (the rest of La Jolla). The San Diego Open
GIS Data Portal2 provides free access to the accumulated
daily total cases of COVID-19 for all zip codes in San
Diego County from as early as March 31, 2020 to March
21, 2021. We fit a piecewise constant βe that changes
every 10 days. By considering the typical incubation and
recovery periods of COVID-19, as well as the fact that the
massive testing capabilities implemented at UCSD reduce
the number of days an individual is infected but unaware of
it to two, we take α1, α2 and γ in (4) to be 1/5, 1/2 and
1/10, respectively. Since the testing plan at UCSD started
at September 1st, 2020, we take σ = 1 up to that point
and σ = 0.9 (approximately the proportion of people in
the 92037 zip-code compared to the sum of the 92093 and
92037 zip-codes) onwards. We are able to obtain optimal

2The San Diego Open GIS Data Portal is a data warehouse jointly build
by the San Diego Association of Governments (SANDAG) and the San
Diego Geographic Information Source (SanGIS), providing open access to
geographic, transportation, and related datasets in the San Diego region.

https://sdgis-sandag.opendata.arcgis.com
https://sdgis-sandag.opendata.arcgis.com
https://sdgis-sandag.opendata.arcgis.com


values of βe that fit the data quite accurately and correlate
well with the social distancing measures enforced by the
state of California. In Figure 1, we compare the hypothetical
evolution of the pandemic that would have resulted from
applying social distancing policies as given by Algorithm 1
after the intervention time T0 = 150 for different values of
σ. We use the data to fit the model up to the intervention
time and get an estimate of the state at that point so that we
can apply Algorithm 1 onwards. We take ith = 3×10−3 and
sth = 0.9. As it can be seen in Figure 1, the real data does
not satisfy the safety constraint for the fraction of infected,
but the curves obtained by applying Algorithm 1 satisfy both
the constraint on the fraction of infected and the fraction of
susceptibles. Define the social distancing payoff P as P =∑350/δ
j=0 βjeδ, with δ = 50 days. For σ = 0, 0.33, 0.66, 1 we

obtain P = 74.67, 71.44, 68.01, 64.58, respectively. We see
that smaller σ yield a higher P . In other words, by providing
access to more testing capabilities to a larger fraction of the
population, the social distancing measures can be relaxed
while still guaranteeing the same safety specifications.

(a)

(b)

Fig. 1. Evolution of the fraction of infected (a) and fraction of susceptible
(b) under the implementation of Algorithm 1 for different values of σ.

VII. CONCLUSIONS

We have introduced a model capturing epidemic spreading
in a population with heterogeneous testing capabilities. We
have shown this model is a particular case of a recently
proposed vectorized SIR model, for which we have identified
various conserved quantities and characterized the stability

properties of its set of equilibria. We have also introduced
a control policy that periodically determines optimal social
distancing measures to mitigate the impact of the epidemic.
We have given sufficient conditions on the model parameters
for the control policy to be well defined and characterized its
performance with regards to keeping the fraction of infected
at any time and the total fraction of infected individuals
below prespecified thresholds. Simulations with COVID-
19 epidemic data from UCSD and its surrounding areas
suggest that better testing capabilities allow for more lenient
social distancing measures while still guaranteeing the same
safety constraints. Future work will study the impact of
disturbances in the parameters and the dynamics, investi-
gate the opportunistic determination of intervention times to
update optimal social distancing measures, and analytically
characterize the benefits on better testing capabilities and the
fraction of population with access to them on the leniency
of the required social distancing measures.
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